Skip to main content

Parameter identifiability analysis in Python

Project description

identifiability - Parameter identifiability analysis in Python

This module performs parameter identifiability analysis to calculate and plot confidence intervals based on a profile-likelihood. The code is adapted from LMFIT, with custom functions to select the range for parameter scanning and for plotting the profile likelihood. The significance is assessed with the chi-squared distribution. Optimization runs can be performed in parallel (using the multiprocessing module).

Installation

identifiability is a pure-Python module. The latest development version can be installed with

$ pip install https://github.com/jmrohwer/identifiability/archive/refs/heads/main.zip

The latest stable release is available on PyPI:

$ pip install identifiability

Basic usage

For background, the reader is referred to the section on Calculation of confidence intervals in the LMFIT documentation.

To start the indentifiability analysis, the user first needs to have performed a parameter estimation with LMFIT. The method for estimating confidence intervals takes an instantiated LMFIT Minimizer object and a MinimizerResult object as input.

A typical workflow would entail:

>>> from identifiability import conf_interval
>>> c = conf_interval(
        mini, result, prob=0.95, limits=0.5, log=False, points=11, return_CIclass=True
    )
>>> print(c[0])  # OrderedDict of parameter names and corresponding confidence intervals
>>> c[1].plot_ci('a')   # plot confidence interval for parameter 'a'
>>> c[1].plot_all_ci()  # plot confidence intervals for all parameters

When using the Model wrapper of LMFIT to perform the parameter estimation and model fit, the instantiated ModelResult object should be passed twice to the conf_interval() method, instead of the Minimizer and MinimizerResult (see above). In this case the function call would be:

>>> c = conf_interval(
        modelresult, modelresult, prob=0.95, limits=0.5, 
        log=False, points=11, return_CIclass=True
    )

Once a profile likelihood has been calculated, the same data can be used to calculate the confidence interval for a different probability, thus avoiding the computationally intensive re-calculation of the profile likelihood:

>>> c[1].calc_all_ci(prob=0.8)

Docstring of the conf_interval method

def conf_interval(
    minimizer,
    result,
    p_names=None,
    prob=0.95,
    limits=0.5,
    log=False,
    points=11,
    method='leastsq',
    return_CIclass=False,
    mp=True,
):
    """
    Calculate the confidence interval (CI) for parameters.

    The parameter for which the CI is calculated will be varied, while the
    remaining parameters are re-optimized to minimize the chi-square. The
    resulting chi-square is used to calculate the probability with a given
    statistic, i.e. chi-squared test.

    Parameters
    ----------
    minimizer : Minimizer or ModelResult
        The minimizer to use, holding objective function.
    result : MinimizerResult or ModelResult
        The result of running Minimizer.minimize() or Model.fit().
    p_names : list, optional
        Names of the parameters for which the CI is calculated. If None
        (default), the CI is calculated for every parameter.
    prob : float, optional
        The probability for the confidence interval (<1). If None,
        the default is 0.95 (95 % confidence interval).
    limits : float, optional
        The limits (as a fraction of the original parameter value) within which
        to vary the parameters for identifiability analysis (default is 0.5).
        If ``log=False``, the parameter is varied from p*limits to p*(2 - limits), 
        where p is the original value.
        If ``log=True``, the parameter is varied from p*limits to p/limits.
    log : bool, optional
        Whether to vary the parameter in a log (True) or a linear (False,
        default) scale.
    points : int, optional
        The number of points for which to calculate the profile likelihood over
        the given parameter range.
    method : str, optional
        The lmfit mimimize() method to use (default='leastsq')
    return_CIclass : bool, optional
        When true, return the instantiated ``ConfidenceInterval`` class to
        access its methods directly (default=False).
    mp : bool, optional
        Run the optimization in parallel using ``multiprocessing`` (default=True)

    Returns
    -------
    output : dict
        A dictionary containing a list of ``(lower, upper)``-tuples containing
        the confidence bounds for each parameter.
    ci : ``ConfidenceInterval`` instance, optional
        Instantiated ``ConfidenceInterval`` class to access the attached methods.
    """

© Johann M. Rohwer, 2022

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

identifiability-0.3.1.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

identifiability-0.3.1-py3-none-any.whl (7.8 kB view details)

Uploaded Python 3

File details

Details for the file identifiability-0.3.1.tar.gz.

File metadata

  • Download URL: identifiability-0.3.1.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for identifiability-0.3.1.tar.gz
Algorithm Hash digest
SHA256 523b3a5e57e601424430585690ab1b4085e70ccce09169574a4a8d3186be29d4
MD5 9e4afe4ea9c45302dbbbae571a766897
BLAKE2b-256 ff0ecb8425c2d14188c2aac44bbf0df70e29fc4baf0fbc31e9889c5f9c2f9666

See more details on using hashes here.

File details

Details for the file identifiability-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for identifiability-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c73432db258ce8221516421ef7fb22db223418d765e7ae418e9ff7017baf5631
MD5 20118c5a0f8c6643bb38b7ad5603fb28
BLAKE2b-256 6f9ad8d15c9421018371bb217b601cd80c984f64704a9ed626ca3df45ca1d2be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page