Skip to main content

Parameter identifiability analysis in Python

Project description

identifiability - Parameter identifiability analysis in Python

This module performs parameter identifiability analysis to calculate and plot confidence intervals based on a profile-likelihood. The code is adapted from LMFIT, with custom functions to select the range for parameter scanning and for plotting the profile likelihood. The significance is assessed with the chi-squared distribution. Optimization runs can be performed in parallel (using the multiprocessing module).

Installation

identifiability is a pure-Python module. The latest development version can be installed with

$ pip install https://github.com/jmrohwer/identifiability/archive/refs/heads/main.zip

The latest stable release is available on PyPI:

$ pip install identifiability

Basic usage

For background, the reader is referred to the section on Calculation of confidence intervals in the LMFIT documentation.

To start the indentifiability analysis, the user first needs to have performed a parameter estimation with LMFIT. The method for estimating confidence intervals takes an instantiated LMFIT Minimizer object and a MinimizerResult object as input.

A typical workflow would entail:

>>> from identifiability import conf_interval
>>> c = conf_interval(
        mini, result, prob=0.95, limits=0.5, log=False, points=11, return_CIclass=True
    )
>>> print(c[0])  # OrderedDict of parameter names and corresponding confidence intervals
>>> c[1].plot_ci('a')   # plot confidence interval for parameter 'a'
>>> c[1].plot_all_ci()  # plot confidence intervals for all parameters

When using the Model wrapper of LMFIT to perform the parameter estimation and model fit, the instantiated ModelResult object should be passed twice to the conf_interval() method, instead of the Minimizer and MinimizerResult (see above). In this case the function call would be:

>>> c = conf_interval(
        modelresult, modelresult, prob=0.95, limits=0.5, 
        log=False, points=11, return_CIclass=True
    )

Once a profile likelihood has been calculated, the same data can be used to calculate the confidence interval for a different probability, thus avoiding the computationally intensive re-calculation of the profile likelihood:

>>> c[1].calc_all_ci(prob=0.8)

Docstring of the conf_interval method

def conf_interval(
    minimizer,
    result,
    p_names=None,
    prob=0.95,
    limits=0.5,
    log=False,
    points=11,
    method='leastsq',
    return_CIclass=False,
    mp=True,
):
    """
    Calculate the confidence interval (CI) for parameters.

    The parameter for which the CI is calculated will be varied, while the
    remaining parameters are re-optimized to minimize the chi-square. The
    resulting chi-square is used to calculate the probability with a given
    statistic, i.e. chi-squared test.

    Parameters
    ----------
    minimizer : Minimizer or ModelResult
        The minimizer to use, holding objective function.
    result : MinimizerResult or ModelResult
        The result of running Minimizer.minimize() or Model.fit().
    p_names : list, optional
        Names of the parameters for which the CI is calculated. If None
        (default), the CI is calculated for every parameter.
    prob : float, optional
        The probability for the confidence interval (<1). If None,
        the default is 0.95 (95 % confidence interval).
    limits : float, optional
        The limits (as a fraction of the original parameter value) within which
        to vary the parameters for identifiability analysis (default is 0.5).
        If ``log=False``, the parameter is varied from p*limits to p*(2 - limits), 
        where p is the original value.
        If ``log=True``, the parameter is varied from p*limits to p/limits.
    log : bool, optional
        Whether to vary the parameter in a log (True) or a linear (False,
        default) scale.
    points : int, optional
        The number of points for which to calculate the profile likelihood over
        the given parameter range.
    method : str, optional
        The lmfit mimimize() method to use (default='leastsq')
    return_CIclass : bool, optional
        When true, return the instantiated ``ConfidenceInterval`` class to
        access its methods directly (default=False).
    mp : bool, optional
        Run the optimization in parallel using ``multiprocessing`` (default=True)

    Returns
    -------
    output : dict
        A dictionary containing a list of ``(lower, upper)``-tuples containing
        the confidence bounds for each parameter.
    ci : ``ConfidenceInterval`` instance, optional
        Instantiated ``ConfidenceInterval`` class to access the attached methods.
    """

© Johann M. Rohwer, 2022

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

identifiability-0.3.2.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

identifiability-0.3.2-py3-none-any.whl (7.8 kB view details)

Uploaded Python 3

File details

Details for the file identifiability-0.3.2.tar.gz.

File metadata

  • Download URL: identifiability-0.3.2.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for identifiability-0.3.2.tar.gz
Algorithm Hash digest
SHA256 30d163bed86155c908bdcc7dd30a5e96c0c2c71726f457fd78f1080a69fea5ac
MD5 9e0b37c9e67c5f4066ad69576b39e0ac
BLAKE2b-256 a3cfe6b49eb7888a01dda6bd073cb57d6954aee82124b0abcffb61f0fa422382

See more details on using hashes here.

File details

Details for the file identifiability-0.3.2-py3-none-any.whl.

File metadata

File hashes

Hashes for identifiability-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 7a99d199d18147e84c44319c877ad2b9b99ea9f9d03bc58ae5b1ac98f465b768
MD5 98e4c6769dc5d3d6826d29706b0f8c09
BLAKE2b-256 2c95a0789e4080bdd51ffa888a58aeaea4a61880115b1de082a1258fbca8ae62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page