Parameter identifiability analysis in Python
Project description
identifiability - Parameter identifiability analysis in Python
This module performs parameter identifiability
analysis to calculate and plot confidence intervals based on a profile-likelihood.
The code is adapted from LMFIT, with custom
functions to select the range for parameter scanning and for plotting the profile
likelihood. The significance is assessed with the chi-squared distribution.
Optimization runs can be performed in parallel (using the multiprocessing
module).
Installation
identifiability
is a pure-Python module. The latest development version can be
installed with
$ pip install https://github.com/jmrohwer/identifiability/archive/refs/heads/main.zip
The latest stable release is available on PyPI:
$ pip install identifiability
The module can be used in combination with PySCeS for
simulation and parameter estimation of kinetic models using the CVODE
solver. When
performing identifiability analysis in parallel using multiprocessing
, additional
dependences are required; these can be installed with:
$ pip install "identifiability[pyscesmp]"
Basic usage
For background, the reader is referred to the section on Calculation of confidence intervals in the LMFIT documentation.
To start the identifiability analysis, the user first needs to have performed a parameter estimation with LMFIT. The method for estimating confidence intervals takes an instantiated LMFIT Minimizer object and a MinimizerResult object as input.
A typical workflow would entail:
>>> from identifiability import conf_interval
>>> c = conf_interval(
mini, result, prob=0.95, limits=0.5, log=False, points=11, return_CIclass=True
)
>>> print(c[0]) # OrderedDict of parameter names and corresponding confidence intervals
>>> c[1].plot_ci('a') # plot confidence interval for parameter 'a'
>>> c[1].plot_all_ci() # plot confidence intervals for all parameters
When using the Model wrapper of LMFIT
to perform the parameter estimation and model fit, the instantiated
ModelResult
object should be passed twice to the conf_interval()
method, instead of the
Minimizer
and
MinimizerResult
(see above). In this case the function call would be:
>>> c = conf_interval(
modelresult, modelresult, prob=0.95, limits=0.5,
log=False, points=11, return_CIclass=True
)
Once a profile likelihood has been calculated, the same data can be used to calculate the confidence interval for a different probability, thus avoiding the computationally intensive re-calculation of the profile likelihood:
>>> c[1].calc_all_ci(prob=0.8)
Docstring of the conf_interval
method
def conf_interval(
minimizer,
result,
p_names=None,
prob=0.95,
limits=0.5,
log=False,
points=11,
method='leastsq',
return_CIclass=False,
mp=True,
):
"""
Calculate the confidence interval (CI) for parameters.
The parameter for which the CI is calculated will be varied, while the
remaining parameters are re-optimized to minimize the chi-square. The
resulting chi-square is used to calculate the probability with a given
statistic, i.e. chi-squared test.
Parameters
----------
minimizer : Minimizer or ModelResult
The minimizer to use, holding objective function.
result : MinimizerResult or ModelResult
The result of running Minimizer.minimize() or Model.fit().
p_names : list, optional
Names of the parameters for which the CI is calculated. If None
(default), the CI is calculated for every parameter.
prob : float, optional
The probability for the confidence interval (<1). If None,
the default is 0.95 (95 % confidence interval).
limits : float, optional
The limits (as a fraction of the original parameter value) within which
to vary the parameters for identifiability analysis (default is 0.5).
If ``log=False``, the parameter is varied from p*limits to p*(2 - limits),
where p is the original value.
If ``log=True``, the parameter is varied from p*limits to p/limits.
log : bool, optional
Whether to vary the parameter in a log (True) or a linear (False,
default) scale.
points : int, optional
The number of points for which to calculate the profile likelihood over
the given parameter range.
method : str, optional
The lmfit mimimize() method to use (default='leastsq')
return_CIclass : bool, optional
When true, return the instantiated ``ConfidenceInterval`` class to
access its methods directly (default=False).
mp : bool, optional
Run the optimization in parallel using ``multiprocessing`` (default=True)
Returns
-------
output : dict
A dictionary containing a list of ``(lower, upper)``-tuples containing
the confidence bounds for each parameter.
ci : ``ConfidenceInterval`` instance, optional
Instantiated ``ConfidenceInterval`` class to access the attached methods.
"""
© Johann M. Rohwer, 2023
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file identifiability-0.4.tar.gz
.
File metadata
- Download URL: identifiability-0.4.tar.gz
- Upload date:
- Size: 7.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 363db5a2f32849108a3ca43cf021caf1ab8dbe27c584b03764cc7a70e8e83f54 |
|
MD5 | 1ebae0727e8603077e46f00348232963 |
|
BLAKE2b-256 | 7cd65d788f070caa0dda3709446d6b8749b4767d1b7af5e4f1bdf2be00cc61bd |
File details
Details for the file identifiability-0.4-py3-none-any.whl
.
File metadata
- Download URL: identifiability-0.4-py3-none-any.whl
- Upload date:
- Size: 8.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a4b43a1fd76d3736437aa72d31d888d7c8b06870e02d0615865c586bffa8961f |
|
MD5 | 30234fcee2dcc18d2020b69bf269df23 |
|
BLAKE2b-256 | 6992fed71287f237b41edfdea0a3d44d5774815d3acfcf30a6058cef8daf8e66 |