Influence graph analysis, consistency check, repair and prediction
Project description
Installation
============
You can install iggy by running::
$ pip install --user iggy
The executable scripts can then be found in ~/.local/bin.
Usage
=====
Typical usage is::
$ iggy.py network.sif observation.obs --show_colorings 10 --show_predictions
For more options you can ask for help as follows::
$ iggy.py -h
usage: iggy.py [-h] [--no_zero_constraints]
[--propagate_unambigious_influences] [--no_founded_constraint]
[--autoinputs] [--scenfit] [--show_colorings SHOW_COLORINGS]
[--show_predictions]
networkfile observationfile
positional arguments:
networkfile influence graph in SIF format
observationfile observations in bioquali format
optional arguments:
-h, --help show this help message and exit
--no_zero_constraints
turn constraints on zero variations OFF, default is ON
--propagate_unambigious_influences
turn constraints ON that if all predecessor of a node
have the same influence this must have an effect,
default is ON
--no_founded_constraint
turn constraints OFF that every variation must be
explained by an input, default is ON
--autoinputs compute possible inputs of the network (nodes with
indegree 0)
--scenfit compute scenfit of the data, default is mcos
--show_colorings SHOW_COLORINGS
number of colorings to print, default is OFF, 0=all
--show_predictions show predictions
The second script contained is opt_graph.py
Typical usage is::
$ opt_graph.py network.sif observations_dir/ --show_repairs 10
For more options you can ask for help as follows::
$ opt_graph.py -h
usage: opt_graph.py [-h] [--no_zero_constraints]
[--propagate_unambigious_influences]
[--no_founded_constraint] [--autoinputs]
[--show_repairs SHOW_REPAIRS] [--opt_graph]
networkfile observationfiles
positional arguments:
networkfile influence graph in SIF format
observationfiles directory of observations in bioquali format
optional arguments:
-h, --help show this help message and exit
--no_zero_constraints
turn constraints on zero variations OFF, default is ON
--propagate_unambigious_influences
turn constraints ON that if all predecessor of a node
have the same influence this must have an effect,
default is ON
--no_founded_constraint
turn constraints OFF that every variation must be
explained by an input, default is ON
--autoinputs compute possible inputs of the network (nodes with
indegree 0)
--show_repairs SHOW_REPAIRS
number of repairs to show, default is OFF, 0=all
--opt_graph compute opt-graph repairs (allows also adding edges),
default is only removing edges
Samples
=======
Sample files available here:: iggy_demo_data.tar.gz_
.. _iggy_demo_data.tar.gz: http://www.cs.uni-potsdam.de/~sthiele/bioasp/downloads/samples/iggy_demo_data.tar.gz
============
You can install iggy by running::
$ pip install --user iggy
The executable scripts can then be found in ~/.local/bin.
Usage
=====
Typical usage is::
$ iggy.py network.sif observation.obs --show_colorings 10 --show_predictions
For more options you can ask for help as follows::
$ iggy.py -h
usage: iggy.py [-h] [--no_zero_constraints]
[--propagate_unambigious_influences] [--no_founded_constraint]
[--autoinputs] [--scenfit] [--show_colorings SHOW_COLORINGS]
[--show_predictions]
networkfile observationfile
positional arguments:
networkfile influence graph in SIF format
observationfile observations in bioquali format
optional arguments:
-h, --help show this help message and exit
--no_zero_constraints
turn constraints on zero variations OFF, default is ON
--propagate_unambigious_influences
turn constraints ON that if all predecessor of a node
have the same influence this must have an effect,
default is ON
--no_founded_constraint
turn constraints OFF that every variation must be
explained by an input, default is ON
--autoinputs compute possible inputs of the network (nodes with
indegree 0)
--scenfit compute scenfit of the data, default is mcos
--show_colorings SHOW_COLORINGS
number of colorings to print, default is OFF, 0=all
--show_predictions show predictions
The second script contained is opt_graph.py
Typical usage is::
$ opt_graph.py network.sif observations_dir/ --show_repairs 10
For more options you can ask for help as follows::
$ opt_graph.py -h
usage: opt_graph.py [-h] [--no_zero_constraints]
[--propagate_unambigious_influences]
[--no_founded_constraint] [--autoinputs]
[--show_repairs SHOW_REPAIRS] [--opt_graph]
networkfile observationfiles
positional arguments:
networkfile influence graph in SIF format
observationfiles directory of observations in bioquali format
optional arguments:
-h, --help show this help message and exit
--no_zero_constraints
turn constraints on zero variations OFF, default is ON
--propagate_unambigious_influences
turn constraints ON that if all predecessor of a node
have the same influence this must have an effect,
default is ON
--no_founded_constraint
turn constraints OFF that every variation must be
explained by an input, default is ON
--autoinputs compute possible inputs of the network (nodes with
indegree 0)
--show_repairs SHOW_REPAIRS
number of repairs to show, default is OFF, 0=all
--opt_graph compute opt-graph repairs (allows also adding edges),
default is only removing edges
Samples
=======
Sample files available here:: iggy_demo_data.tar.gz_
.. _iggy_demo_data.tar.gz: http://www.cs.uni-potsdam.de/~sthiele/bioasp/downloads/samples/iggy_demo_data.tar.gz
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
iggy-0.2.tar.gz
(287.0 kB
view details)
File details
Details for the file iggy-0.2.tar.gz
.
File metadata
- Download URL: iggy-0.2.tar.gz
- Upload date:
- Size: 287.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 78b113955a385c7f54ab8bfa2aed897a56d340b55e164ac4a6ff208e668c66e9 |
|
MD5 | e5414357754427ac626a4c60df6f11c2 |
|
BLAKE2b-256 | 92515a7f142e29d4135aaba9bdf4ed3aeb10614fb231272f5454e17704288d4b |