Observe dataset of images and targets in few shots
Project description
# ImageDatasetViz
[![Build Status](https://travis-ci.org/vfdev-5/ImageDatasetViz.svg?branch=master)](https://travis-ci.org/vfdev-5/ImageDatasetViz)
[![Coverage Status](https://coveralls.io/repos/github/vfdev-5/ImageDatasetViz/badge.svg?branch=master)](https://coveralls.io/github/vfdev-5/ImageDatasetViz?branch=master)
Observe dataset of images and targets in few shots
![VEDAI example](examples/vedai_example.png)
## Descriptions
Idea is to create tools to store images, targets from a dataset as a few large images to observe the dataset
in few shots.
## Installation
```bash
python setup.py install
```
or
```bash
pip install git+https://github.com/vfdev-5/ImageDatasetViz.git
```
## Usage
### Render a single datapoint
First, we can just take a look on a single data point rendering. Let's assume that we
have `img` as, for example, `PIL.Image` and `target` as acceptable target type (`str` or list of points or
`PIL.Image` mask, etc), thus we can generate a single image with target.
```python
from image_dataset_viz import render_datapoint
# if target is a simple label
res = render_datapoint(img, "test label", text_color=(0, 255, 0), text_size=10)
plt.imshow(res)
# if target is a mask image (PIL.Image)
res = render_datapoint(img, target, blend_alpha=0.5)
plt.imshow(res)
# if target is a bounding box, e.g. np.array([[10, 10], [55, 10], [55, 77], [10, 77]])
res = render_datapoint(img, target, geom_color=(255, 0, 0))
plt.imshow(res)
```
#### Example output on Leaf Segmentation dataset from CVPPP2017
![image with mask](examples/image_mask.png) ![image with label](examples/image_label.png) ![image with bbox label](examples/image_bbox_label.png)
### Export complete dataset
For example, we have a dataset of image files and annotations files (polygons with labels):
```python
img_files = [
'/path/to/image_1.ext',
'/path/to/image_2.ext',
...
'/path/to/image_1000.ext',
]
target_files = [
'/path/to/target_1.ext2',
'/path/to/target_2.ext2',
...
'/path/to/target_1000.ext2',
]
```
We can produce a single image composed of 20x50 small samples with targets to better visualize the whole dataset.
Let's assume that we do need a particular processing to open the images in RGB 8bits format:
```python
from PIL import Image
def read_img_fn(img_filepath):
return Image.open(img_filepath).convert('RGB')
```
and let's say the annotations are just lines with points and a label, e.g. `12 23 34 45 56 67 car`
```python
from pathlib import Path
import numpy as np
def read_target_fn(target_filepath):
with Path(target_filepath).open('r') as handle:
points_labels = []
while True:
line = handle.readline()
if len(line) == 0:
break
splt = line[:-1].split(' ') # Split into points and labels
label = splt[-1]
points = np.array(splt[:-1]).reshape(-1, 2)
points_labels.append((points, label))
return points_labels
```
Now we can export the dataset
```python
de = DatasetExporter(read_img_fn=read_img_fn, read_target_fn=read_target_fn,
img_id_fn=lambda fp: Path(fp).stem, n_cols=20)
de.export(img_files, target_files, output_folder="dataset_viz")
```
and thus we should obtain a single png image with composed of 20x50 small samples.
## Examples
- [CIFAR10](examples/example_CIFAR10.ipynb)
- [VEDAI](examples/example_VEDAI.ipynb)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
image_dataset_viz-0.2.tar.gz
(8.7 kB
view details)
Built Distribution
File details
Details for the file image_dataset_viz-0.2.tar.gz
.
File metadata
- Download URL: image_dataset_viz-0.2.tar.gz
- Upload date:
- Size: 8.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95826cbf5326c9dbb106be4974e7f3f8fac0b9acbd9c3ef8906809992c4b61bf |
|
MD5 | 90bc787a8618411f86fc1a61c19c588b |
|
BLAKE2b-256 | 258305b6d87fb1c63110a18fe2fa8e84b1aadd40c1804cf32b53891b820b7523 |
File details
Details for the file image_dataset_viz-0.2-py2.py3-none-any.whl
.
File metadata
- Download URL: image_dataset_viz-0.2-py2.py3-none-any.whl
- Upload date:
- Size: 8.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | df47c734420de9ce1e8a95b6e6d2f1a6f565f6c0d84db301ee2b32b204566b49 |
|
MD5 | 2acbe57b7e8317d5e9e1b354da5bcd24 |
|
BLAKE2b-256 | f3e5c87dd62ce0498bd265b02109346628da76b1f1920d935b20e6939d283e14 |