MINUIT from Python - Fitting like a boss
Project description
iminuit is a Python interface to the MINUIT C++ package.
It can be used as a general robust function minimisation method, but is most commonly used for likelihood fits of models to data, and to get model parameter error estimates from likelihood profile analysis.
Documentation: http://iminuit.readthedocs.org/
Mailing list: https://groups.google.com/forum/#!forum/iminuit
License: MINUIT is LGPL and iminuit is MIT
Citation: https://github.com/iminuit/iminuit/blob/master/CITATION
In a nutshell
from iminuit import Minuit
def f(x, y, z):
return (x - 2) ** 2 + (y - 3) ** 2 + (z - 4) ** 2
m = Minuit(f)
m.migrad() # run optimiser
print(m.values) # {'x': 2,'y': 3,'z': 4}
m.hesse() # run covariance estimator
print(m.errors) # {'x': 1,'y': 1,'z': 1}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
iminuit-1.3.3.tar.gz
(498.5 kB
view details)
File details
Details for the file iminuit-1.3.3.tar.gz
.
File metadata
- Download URL: iminuit-1.3.3.tar.gz
- Upload date:
- Size: 498.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.13.0 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.23.3 CPython/2.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3235c7e540b278eb55ff851c2a8b299e825db6c770ba15c80140d2fd270ca4ba |
|
MD5 | 35f074f44dadd4e20dd110576c8a0ffc |
|
BLAKE2b-256 | c6e91001b530827dd5b460b5404201e598b4cd5da6ff7bc90631c88d903723cb |