MINUIT2 from Python - Fitting like a boss
Project description
iminuit is a Python interface to the MINUIT2 C++ package.
It can be used as a general robust function minimization method, but is most commonly used for likelihood fits of models to data, and to get model parameter error estimates from likelihood profile analysis.
Documentation: http://iminuit.readthedocs.org/
Gitter: https://gitter.im/HSF/PyHEP
Mailing list: https://groups.google.com/forum/#!forum/scikit-hep-forum
License: MINUIT2 is LGPL and iminuit is MIT
Citation: https://github.com/iminuit/iminuit/blob/master/CITATION
In a nutshell
from iminuit import Minuit
def f(x, y, z):
return (x - 2) ** 2 + (y - 3) ** 2 + (z - 4) ** 2
m = Minuit(f)
m.migrad() # run optimiser
print(m.values) # {'x': 2,'y': 3,'z': 4}
m.hesse() # run covariance estimator
print(m.errors) # {'x': 1,'y': 1,'z': 1}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
iminuit-1.3.6.tar.gz
(492.3 kB
view details)
File details
Details for the file iminuit-1.3.6.tar.gz
.
File metadata
- Download URL: iminuit-1.3.6.tar.gz
- Upload date:
- Size: 492.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d79a197f305d4708a0e3e52b0a6748c1a6997360d2fbdfd09c022995a6963b5e |
|
MD5 | fd3288cfde04181d7c12c5e4af399672 |
|
BLAKE2b-256 | 0182cea3e9db377ba7db6454c1de93c83a39f83e66157dc0d9738c54aaba3d1f |