Skip to main content

Jupyter-friendly Python frontend for MINUIT2 in C++

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/pypi/v/iminuit.svg https://img.shields.io/conda/vn/conda-forge/iminuit.svg https://coveralls.io/repos/github/scikit-hep/iminuit/badge.svg?branch=develop https://readthedocs.org/projects/iminuit/badge/?version=latest https://zenodo.org/badge/DOI/10.5281/zenodo.3949207.svg ascl:2108.024 https://img.shields.io/gitter/room/Scikit-HEP/iminuit https://mybinder.org/badge_logo.svg

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN’s ROOT team.

Minuit was designed to minimise statistical cost functions, for likelihood and least-squares fits of parametric models to data. It provides the best-fit parameters and error estimates from likelihood profile analysis.

  • Supported CPython versions: 3.6+

  • Supported PyPy versions: 3.6+

  • Supported platforms: Linux, OSX and Windows.

The iminuit package comes with additional features:

  • Builtin cost functions for statistical fits

    • Binned and unbinned maximum-likelihood

    • Non-linear regression with (optionally robust) weighted least-squares

    • Gaussian penalty terms

    • Cost functions can be combined by adding them: total_cost = cost_1 + cost_2

  • Support for SciPy minimisers as alternatives to Minuit’s Migrad algorithm (optional)

  • Support for Numba accelerated functions (optional)

Checkout our large and comprehensive list of tutorials that take you all the way from beginner to power user. For help and how-to questions, please use the discussions on GitHub or gitter.

In a nutshell

iminuit is intended to be used with a user-provided negative log-likelihood function or least-squares function. Standard functions are included in iminuit.cost, so you don’t have to write them yourself. The following example shows how iminuit is used with a dummy least-squares function.

from iminuit import Minuit

def cost_function(x, y, z):
    return (x - 2) ** 2 + (y - 3) ** 2 + (z - 4) ** 2

m = Minuit(cost_function, x=0, y=0, z=0)

m.migrad()  # run optimiser
m.hesse()   # run covariance estimator

print(m.values)  # x: 2, y: 3, z: 4
print(m.errors)  # x: 1, y: 1, z: 1

Interactive fitting

iminuit optionally supports an interactive fitting mode in Jupyter notebooks.

Animated demo of an interactive fit in a Jupyter notebook

Partner projects

  • numba_stats provides faster implementations of probability density functions than scipy, and a few specific ones used in particle physics that are not in scipy.

  • jacobi provides a robust, fast, and accurate calculation of the Jacobi matrix of any transformation function and building a function for generic error propagation.

Versions

The current 2.x series has introduced breaking interfaces changes with respect to the 1.x series.

All interface changes are documented in the changelog with recommendations how to upgrade. To keep existing scripts running, pin your major iminuit version to <2, i.e. pip install 'iminuit<2' installs the 1.x series.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iminuit-2.18.0.tar.gz (431.8 kB view details)

Uploaded Source

Built Distributions

iminuit-2.18.0-cp311-cp311-win_amd64.whl (327.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

iminuit-2.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (377.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

iminuit-2.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (350.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

iminuit-2.18.0-cp311-cp311-macosx_10_9_x86_64.whl (358.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

iminuit-2.18.0-cp311-cp311-macosx_10_9_universal2.whl (627.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.18.0-cp310-cp310-win_amd64.whl (327.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

iminuit-2.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (377.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

iminuit-2.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (350.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

iminuit-2.18.0-cp310-cp310-macosx_10_9_x86_64.whl (358.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

iminuit-2.18.0-cp310-cp310-macosx_10_9_universal2.whl (627.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.18.0-cp39-cp39-win_amd64.whl (327.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

iminuit-2.18.0-cp39-cp39-win32.whl (283.6 kB view details)

Uploaded CPython 3.9 Windows x86

iminuit-2.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (350.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

iminuit-2.18.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (349.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

iminuit-2.18.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (362.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

iminuit-2.18.0-cp39-cp39-macosx_10_9_x86_64.whl (358.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

iminuit-2.18.0-cp39-cp39-macosx_10_9_universal2.whl (627.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.18.0-cp38-cp38-win_amd64.whl (327.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

iminuit-2.18.0-cp38-cp38-win32.whl (283.4 kB view details)

Uploaded CPython 3.8 Windows x86

iminuit-2.18.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (350.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

iminuit-2.18.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (348.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

iminuit-2.18.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (362.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

iminuit-2.18.0-cp38-cp38-macosx_10_9_x86_64.whl (358.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

iminuit-2.18.0-cp38-cp38-macosx_10_9_universal2.whl (627.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.18.0-cp37-cp37m-win_amd64.whl (325.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

iminuit-2.18.0-cp37-cp37m-win32.whl (286.2 kB view details)

Uploaded CPython 3.7m Windows x86

iminuit-2.18.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (368.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

iminuit-2.18.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (354.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

iminuit-2.18.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (371.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

iminuit-2.18.0-cp37-cp37m-macosx_10_9_x86_64.whl (353.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file iminuit-2.18.0.tar.gz.

File metadata

  • Download URL: iminuit-2.18.0.tar.gz
  • Upload date:
  • Size: 431.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for iminuit-2.18.0.tar.gz
Algorithm Hash digest
SHA256 7ee2c6a0bcdac581b38fae8d0f343fdee55f91f1f6a6cc9643fcfbcc6c2dc3e6
MD5 f06e306a37653e47c5a4d34ec05e2aef
BLAKE2b-256 28146bf592c1e821b4c560f3a19905cd12182562778a767cea6755002c3d26d0

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.18.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 327.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for iminuit-2.18.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 74b3a0218c7844db7364489f0a10d9373461e309377c37120d95f5d148a5ed96
MD5 de7e5734443b1db7eb7f4bf86dd74453
BLAKE2b-256 c92f710b9aa4fc8cbe92abcb3704ffe5f0744e38e73b0502ef3e0f3d6b2480f9

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7603cdbd2c198e2f629cc50e360ad8f95579a5f42b7690d6ba41b0d3338f9288
MD5 38105dadaeb03594191f82421da5697a
BLAKE2b-256 0db8a8d5bcecaafc75384be9d28b6e7ee1eadc1d61c420fff1f6795ecf0950b2

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0333cd340983ad1500dff4cf3952852c734d36fafea0195cf7d645ee6f765db
MD5 b82f3025df224dddac503a83a748587b
BLAKE2b-256 a75327098288fba0fa5374df504580495f23c0536ce97d0ca30d6718420d1bf7

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a06bec7bcd3d1a92e010dc75bf7ac973efb6f01c3b5a5b56a7ff51b38b972f0b
MD5 45209a9a7ba72f7503b164bb67be2171
BLAKE2b-256 810efa1f68f594b7e208f11c95ed847f575d91aa50058588f40b4ba3fe01aaf8

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 69e2d46d10eb41234f9b2518322eb2806d604631fc0fcf7f9fb5c1a13d8eeb49
MD5 b41f1b411f01149bf6e235e5fe88ca6b
BLAKE2b-256 3ea0362d7326cea7e7faf0fad1e679eef228cbd36df74a6cee87066f144a33d7

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.18.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 327.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for iminuit-2.18.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 58be3e405778c2cbdf6a657445832321377e6c67002d09fab42abd4e1f375a54
MD5 9260e1a9d786761b172869ba75aa7b4f
BLAKE2b-256 6dd83fa2966965b2dc5bcffaa5410ec67ffb16b549245030e88a64ba764b94e5

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e56439bf98330cf7c2f51d849551dcbc56e7ab99cec29c0113090dacd9e2dd05
MD5 8e8708c52894f083faf42372a0aca64e
BLAKE2b-256 3fdb00fc84089c8d2bd9ff447fcd204101003b4f3651351c5c02df1149db0fe3

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ecdb0bed1c4ad5715705d28c87cc2dfee57445de23bf98271818e8f87a201f7
MD5 b7d3ad8975019779e01143b1e62f767e
BLAKE2b-256 cd10a18391b6af48ccb008e6ba0101a6c6afe699124eb12a66e1fe55a57ccf54

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5cdca543d2dfb41ac66259a3ff095be9581812bdaf7f112aa77c93b67bd8e347
MD5 ddf7a5b1bd1af0c0823e1e8c1ede5918
BLAKE2b-256 a5eaf73bb837b7b0091da409c34fb56e2dc624c612b57abb15e1918625edf731

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cd584d2e95608629f955c369e45b18c4f98f1c8668b655a674c055444537a084
MD5 2f380a1af4dbe41a72768a7478d4ef47
BLAKE2b-256 0a80349cbb56a7b4eb4376621493a54baac407c49dfd84f6e85f8fd7e105798b

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.18.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 327.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for iminuit-2.18.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 26b9c024c7c24fdb05a9cb1d8991064248f5f3a608ff8745a003e6ec2934528a
MD5 6d921887bd9a10044d4d2bf67b81517f
BLAKE2b-256 ff0444e455c13410758e9dd149e9d59ceda56726f0bf29636ade3c295a18d86b

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: iminuit-2.18.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 283.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for iminuit-2.18.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0546ba5a23de4e98e50c88d030627a49b3027fc93d6fda7e1d5f7802015bfef6
MD5 c8c560131f1d80b85465c6db3db1faa2
BLAKE2b-256 84b11560843541947b09c290e084b722ca02347365e068c5d8fd00746575c601

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00e8f4db70684aec96875489dcfc4c853cfb1a9e1e8c3576361621fc56fffcb3
MD5 c4358090e50047896f36a0525ead9a7f
BLAKE2b-256 2b49dd5fc81633afeca3b5cca8ab520a3c6561e4063f8c5177382d83a67884c4

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8e2922a8464bb708bd2b5b47911bade3c94c4a3b982652ac758c9d1cfe6778b6
MD5 eef35483e95526c5eee950cb1d2b9f2a
BLAKE2b-256 78c3fbb820a0d93cba2165558d13457323b1f00bc24b092a76d1d1090dc842f1

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 73edd98a10d1565bf3bc5f985a6537c7a861890b09f11bbc4bf5eb669938172b
MD5 fc991fa5acae31906dff4dfa97944aad
BLAKE2b-256 f4b0300ea75c8bf8bdabe28396da4b000a882ab3e25b55e3e56a34435fbd4b4a

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 34a42c2861f4d31250c4a4b6efb30767ded9e503be8f038f25be07e7528e4cb8
MD5 05c00c6216b0b2893c39773b1c2051cc
BLAKE2b-256 cc3b3375f79c4f555bd35952d19fbd7b1cdeaae499863260263ce5bafdb74a32

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0b85d07cd2bdf1b72bad7c882bda1478a864cfb4a400e08679d9cc99cf941c69
MD5 a5e0413420febacfd5b995b9377eab88
BLAKE2b-256 2dee179b9975f6e2085b6a86be3cacaf509bb7ef2d70550a4b1c70d7b4134f02

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.18.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 327.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for iminuit-2.18.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 19a86c815924ce0e12b1762bd13b9dde1b47b0a41ec823b6e87b3f7707d04571
MD5 4645a665cc2da11933a1fa567b4d7dd6
BLAKE2b-256 31986bb5affa47ea8cbdc3ea6a6b2f345354924d1794f2adad47ec4b62ada859

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: iminuit-2.18.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 283.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for iminuit-2.18.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b4e638a604551580e1ed41dc9ea09e8b4bd21e3658735877ee865b1ac42e6e30
MD5 fe76ac7a4e01e393669772041d6ae88e
BLAKE2b-256 b4a417b6f7803823ef241c356515936d5dbf353965b02bf6f5fed861ec0c5ab7

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 81f8cb24ab9f8f67822dc3b503e57bc03b02837c23b18502e9ff709e8acb4e18
MD5 1c11365eedc12da6ecf23b3a6f1e5f47
BLAKE2b-256 eb324fb4491b1821c63731cfe1e4d42e4359a95f2cc0ce63c0416cba109dc825

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a6e90b064a052090a851f88091f11467f99362b8e450c69899897d187c852f6b
MD5 44de53c1439c97a27e90adf4e678d491
BLAKE2b-256 54682e00b0a2b2afdc13b5673fd083b7498e25e20dd93d617ff490c1d4f9f700

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4d80243a009cf30f65f85af1706decd8054346ed39cf86f2195335a3e11522d7
MD5 90eb71d77eff82615663e6a11ce72ed3
BLAKE2b-256 ef4bd3162f65cf4135508803378ccff0f4d720750701dd39db56cc9b93e52293

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ce0080036843e592ea5c9a6b6ff3b42d60f1754f6d795075ab695ec5013f2c1
MD5 56681cdd2e854cdf0d451de8d3d66be6
BLAKE2b-256 c81b55b3d21358d002b8dcc118b0e3e9402db07486e9107c8d1eb9caea6eb12d

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 814985453870312fab02733aa853b69521f6434946175c5493ed0ed7c037de10
MD5 1421348918b5b3aa5872140b1050c080
BLAKE2b-256 87394015d3b0a5b746745c8249e2ee358a0f9ab51e8a644893e632bd8877cbdd

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.18.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 325.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for iminuit-2.18.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5671e5402bbbbdfafd6e8ab21c431d76a64ce97088529a127264abf31a53bcd7
MD5 eb4bf7e9bbc39bbff5fb5084969ea838
BLAKE2b-256 e3624091f911bb38387f37d6cbd3372a43d36ca415efcded28be916f58ef78e0

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: iminuit-2.18.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 286.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for iminuit-2.18.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b955079b0e65a384653960a4c061b603a9640700d5f398c426924388ffe6af00
MD5 1384804a65a07a89d5db62a21833ce91
BLAKE2b-256 32d8a542112311e405dc746c523c51b7a8c151cf0bdcaa7b7c7e191c47556e99

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c259eddd53c7eb94e8462f7fe496076d031b836b84a6da8a15dd6b9acdf1efc
MD5 6066bd4501f9eab929132ad739d1b6c5
BLAKE2b-256 2531f770d8250dc677e684ac1fd2ae55ab495462aa1bd5e26a4798d70ad180e8

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3c22f5fdb3ecb382d6cec58c38c81b3d2fea8263e862961af0b5a0d891e7febb
MD5 4b073bb8ba597adaf5757a1fe7380631
BLAKE2b-256 18033414603520ee23b61ccb6bb34c7d022528cd00a43c101d3cb6c4a6b6191c

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 24e393ac1ac7c5b7e7a81ac9b877050a5459e58e40952c1b08163861f66b14b8
MD5 80b943b43ea979e764c2d987cbd93401
BLAKE2b-256 cff0e6fce8a8168e65b6abf8526ec79d159bd76f08024e636c2c4213015aab0a

See more details on using hashes here.

File details

Details for the file iminuit-2.18.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.18.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2900e61e40881c8d8289213d206454947bd82aeb36cca7d0aa31b5c25305c283
MD5 57a386cfb4f3f46724d8eb638a8e7762
BLAKE2b-256 57e413abf38987892f3526365dbcabfa5af894e848fe2f666d49bbb84ad204bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page