Skip to main content

Jupyter-friendly Python frontend for MINUIT2 in C++

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/pypi/v/iminuit.svg https://img.shields.io/conda/vn/conda-forge/iminuit.svg https://coveralls.io/repos/github/scikit-hep/iminuit/badge.svg?branch=develop https://readthedocs.org/projects/iminuit/badge/?version=latest https://zenodo.org/badge/DOI/10.5281/zenodo.3949207.svg ascl:2108.024 https://img.shields.io/gitter/room/Scikit-HEP/iminuit https://mybinder.org/badge_logo.svg

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN’s ROOT team.

Minuit was designed to minimise statistical cost functions, for likelihood and least-squares fits of parametric models to data. It provides the best-fit parameters and error estimates from likelihood profile analysis.

  • Supported CPython versions: 3.6+

  • Supported PyPy versions: 3.6+

  • Supported platforms: Linux, OSX and Windows.

The iminuit package comes with additional features:

  • Builtin cost functions for statistical fits

    • Binned and unbinned maximum-likelihood

    • Non-linear regression with (optionally robust) weighted least-squares

    • Gaussian penalty terms

    • Cost functions can be combined by adding them: total_cost = cost_1 + cost_2

  • Support for SciPy minimisers as alternatives to Minuit’s Migrad algorithm (optional)

  • Support for Numba accelerated functions (optional)

Documentation

Checkout our large and comprehensive list of tutorials that take you all the way from beginner to power user. For help and how-to questions, please use the discussions on GitHub or gitter.

Lecture by Glen Cowan

In the exercises to his lecture for the KMISchool 2022, Glen Cowan shows how to solve statistical problems in Python with iminuit. You can find the lectures and exercises on the Github page, which covers both frequentist and Bayesian methods.

Glen Cowan is a known for his papers and international lectures on statistics in particle physics, as a member of the Particle Data Group, and as author of the popular book Statistical Data Analysis.

In a nutshell

iminuit is intended to be used with a user-provided negative log-likelihood function or least-squares function. Standard functions are included in iminuit.cost, so you don’t have to write them yourself. The following example shows how iminuit is used with a dummy least-squares function.

from iminuit import Minuit

def cost_function(x, y, z):
    return (x - 2) ** 2 + (y - 3) ** 2 + (z - 4) ** 2

m = Minuit(cost_function, x=0, y=0, z=0)

m.migrad()  # run optimiser
m.hesse()   # run covariance estimator

print(m.values)  # x: 2, y: 3, z: 4
print(m.errors)  # x: 1, y: 1, z: 1

Interactive fitting

iminuit optionally supports an interactive fitting mode in Jupyter notebooks.

Animated demo of an interactive fit in a Jupyter notebook

Partner projects

  • boost-histogram from Scikit-HEP provides fast generalized histograms that you can use with the builtin cost functions.

  • numba_stats provides faster implementations of probability density functions than scipy, and a few specific ones used in particle physics that are not in scipy.

  • jacobi provides a robust, fast, and accurate calculation of the Jacobi matrix of any transformation function and building a function for generic error propagation.

Versions

The current 2.x series has introduced breaking interfaces changes with respect to the 1.x series.

All interface changes are documented in the changelog with recommendations how to upgrade. To keep existing scripts running, pin your major iminuit version to <2, i.e. pip install 'iminuit<2' installs the 1.x series.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iminuit-2.19.0.tar.gz (433.2 kB view details)

Uploaded Source

Built Distributions

iminuit-2.19.0-cp311-cp311-win_amd64.whl (328.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

iminuit-2.19.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (378.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

iminuit-2.19.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (351.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

iminuit-2.19.0-cp311-cp311-macosx_10_9_x86_64.whl (360.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

iminuit-2.19.0-cp311-cp311-macosx_10_9_universal2.whl (629.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.19.0-cp310-cp310-win_amd64.whl (328.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

iminuit-2.19.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (378.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

iminuit-2.19.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (351.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

iminuit-2.19.0-cp310-cp310-macosx_10_9_x86_64.whl (360.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

iminuit-2.19.0-cp310-cp310-macosx_10_9_universal2.whl (629.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.19.0-cp39-cp39-win_amd64.whl (328.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

iminuit-2.19.0-cp39-cp39-win32.whl (284.6 kB view details)

Uploaded CPython 3.9 Windows x86

iminuit-2.19.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (351.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

iminuit-2.19.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (350.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

iminuit-2.19.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (363.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

iminuit-2.19.0-cp39-cp39-macosx_10_9_x86_64.whl (360.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

iminuit-2.19.0-cp39-cp39-macosx_10_9_universal2.whl (629.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.19.0-cp38-cp38-win_amd64.whl (328.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

iminuit-2.19.0-cp38-cp38-win32.whl (284.5 kB view details)

Uploaded CPython 3.8 Windows x86

iminuit-2.19.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (351.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

iminuit-2.19.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (349.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

iminuit-2.19.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (363.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

iminuit-2.19.0-cp38-cp38-macosx_10_9_x86_64.whl (360.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

iminuit-2.19.0-cp38-cp38-macosx_10_9_universal2.whl (629.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file iminuit-2.19.0.tar.gz.

File metadata

  • Download URL: iminuit-2.19.0.tar.gz
  • Upload date:
  • Size: 433.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for iminuit-2.19.0.tar.gz
Algorithm Hash digest
SHA256 f4d1cbaccf115cdc4866968f649f2a37794a5c0de018de8156aa74556350a54c
MD5 d2c54f991ff77ba85892913952125b21
BLAKE2b-256 277cc8bbece0e6dcc31930236ba01ba8d5bd347c9b85114ad1ca45924ebbbfce

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.19.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 328.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for iminuit-2.19.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7ef1b34ad480aea449f7cf2e9fed90dd2bc0f8efc17268ede9198a8236fe3326
MD5 8e08c11c9359e69edf1a1a08d015767a
BLAKE2b-256 07fcd458c70b468797b83be9d19f4561ce662e9a47c3a7547a9f9dc1c8ab9a9c

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40d3fdda747b7c172cb5565128e1dae0fac576d87ee638b05e887922ddc7c907
MD5 e23a486a1cd06b41909b2177088295ce
BLAKE2b-256 9a865199a1583e9bea3ac7ed7a7109a4d764cb38b3a513ed4672d10565182a2b

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 682651c5d9971a662583fee492c1651678e0c980c88be5442f8749b1d294dc13
MD5 fc3d2eba4cffdbb216ddf381d6f10fd6
BLAKE2b-256 87e80ddba72c3e6d0433be79127d7dbccf590fab8001a79f15bfa69abce6f0d1

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 056fc1ba7ea42139154b368c3cd81593943190cbfe3867314d45b1f5993f8b41
MD5 8da03c9bdcf1923686248de2b69d0550
BLAKE2b-256 49a2047dbf82d2cc75474718636c60c960fc3c052ba56fc9df229dcaef01f297

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c325fbbffb99c9e249af79a86fa669075eed03f4194b0d41ac03c0ae1dbd6264
MD5 1842353b18faa5ca3bef2d997cf32d2b
BLAKE2b-256 83bd131e89dbaeb247f8c199a173d098e083d3b383d76ab050e169f3eb11587e

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.19.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 328.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for iminuit-2.19.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b0ea93a096564cf09d86c6bfb28f7aecb4cb8fe0bcec42a848c96fd2c62b94ca
MD5 73641b2ac44465d20d6fc2dbba226ff5
BLAKE2b-256 49fc8ddff6b0b1e6f76962a0fc6d49267dc130753404b732cf12a08490686ccd

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b97dc63396990bc6cf09ce7c94f952793a86e9dceb9b5c3b4c93dfe031b436c
MD5 ab48ebfab2511d02fa599b1063e2b962
BLAKE2b-256 febf20f7581dba20367572e001a8bd7fc747209f74746b748ac7eb763666d528

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d9d832bee9385056df72c8ef42583566193da4e6d36aa8afe18aee7a6b6eb470
MD5 421f5d66157048008c7b34a882c6953c
BLAKE2b-256 94a63f41bbd9f0e84fd0c96408555e6dd9aefc7db364639c2c4964702d91dfbf

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 022187f169b20fb1d2a23102f3ddfba349e88a9dcdf26c4c2c7196f4df116c63
MD5 00524d52a0d968025db06284ac4fd5c6
BLAKE2b-256 6fbe7fae685c27abafe199ae1ec279bc2b932daa372efd2beab3bf953d29f74b

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 06a169710edf70209fd8957230a3b1efe4199a8e1f0cbe927ce229f2b6db2c74
MD5 b32d8affd8f336faa9a4e046ec795057
BLAKE2b-256 c1815dfe06a8252fc276a90df408f630441bb481afc7125610ec6a044d878daa

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.19.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 328.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for iminuit-2.19.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c3de09dfcab66764971e7f0414367f7aef6e5afa60728071cfd294c8829abc4b
MD5 76f6c3557d3f48dd4a243f2236187628
BLAKE2b-256 deebea09033ebe04429112999034f787b6072df66352bf7f0aebbb9e3a70e068

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: iminuit-2.19.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 284.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for iminuit-2.19.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 bb858ebb71d0f10f600cbfdd8a16f806e22a52da81256cec86fe387054a66cae
MD5 c5a99c5b69a261da6c5d644132b2dcd1
BLAKE2b-256 4726031dabd91081dd96bd3e1f03f854ca322dc6f3dd2f130b0153466f7fc1e6

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d113dde2b9fe9f14916583bbe2b7a784f287fade9e7d0fd96a76f0c837976a84
MD5 b58906d68e4a676a146154dcde7b6e3d
BLAKE2b-256 4d3d52ac54483d9c3a0e0e61f3b3d41e70560a5dbfe6eac5ee56a88e7631b3b1

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6cc39cab8570828ec7e4278d6c20dd3a4d6761463339850e0ead099a4e954f45
MD5 7b6cf7dbeb9afa0d2ee9486a7883ee44
BLAKE2b-256 a3b36c7609f3abb6af2942882b50b4a24501296661e54e4eab6c43d346a98012

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 457e2f02d47f85f3dc4a69935d7384075d9e9520fa9677321ca58d70431d8671
MD5 11051d493cd9266a6ff2d3b1791341f3
BLAKE2b-256 b60a7af933fbe266aa70423ccf29abf4c620c6c8048e3b011c04a3932bb31b08

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c920ca39d23c51988a7a10451dcb5b0ac216cd2f48d4be7b54343a2e52dbfa0
MD5 7a014d5322e2fab218a955d04a07b253
BLAKE2b-256 f6e38fef072f74c6886b4b9a78c316b60d162fae9db4dc6e989ebe0541e53f02

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0e098ef255634c766b876e43aa2883ef63b173a8752bccfa796037fd0414307c
MD5 fdec33ea0cba03298ca29419dc139ac1
BLAKE2b-256 c99861aa57a853d5e79600d15100bf62845556bcbf4affd19487bb9edc355c7b

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.19.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 328.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for iminuit-2.19.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 50583a0c79c436daa45fadd1a9daf1acdbf1c7033e6b5909f72affaade1b0877
MD5 89be97aaebe1a31369971ee3196d927a
BLAKE2b-256 df69fb94978c8a9d5f880829cbd1e6607c60179fdc84cb9ceb1651cdd6ff287d

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: iminuit-2.19.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 284.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for iminuit-2.19.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7c5f2667656c3e5eb833ae34240d19683402b3af199b4480ed3b0589d9eff31a
MD5 a97f02b7d07d291e756721a01233c9ef
BLAKE2b-256 cb879d653ed7fc4d02fa77641eaf0223c8f50aac38bdc496ce952f0e4869630a

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4f3b2401d4ae53243c65921850d3a0576c8a15077e74cd2c92a52d6ac07adf2b
MD5 9b43debc503128b46ee00836b8ea1662
BLAKE2b-256 02203b27088dd6d8145e59444385678003219ef566bca93347e09a4af7cf919d

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d0136e34a1ed4462ab89e0a38389d0acf5ce390c20b0eac939c832e9c88342fb
MD5 bdf7df1a84aea8a6bc90c010f63a2383
BLAKE2b-256 b636b11e992507872e256025d71bb370836632b382dfa30886d5a6f54dc685f8

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b19109d2c9187f922603dd6cafd5ccaf419da7b3232c09f925e087a6d2d9d1a9
MD5 76c0447cb170bf5ae77c064bb33013ed
BLAKE2b-256 b396b96d6552c44821d2ea79940bada9befa884f061f26b98ad92e438a39230f

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 98084a9b00711af11555ffbae4a2d77dc2e84e00b352bfffd0d209aa4f131397
MD5 497f2d67779fd63c40d784f471e4abbf
BLAKE2b-256 19c3a93b2d7523a151ecb0cf764f7e917bd0a07471e239ddeaa30b9fed5fcf4a

See more details on using hashes here.

File details

Details for the file iminuit-2.19.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.19.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b9773f6fe3378138adb3d9503a8c8ea979c61dc88b4d14a2821661eb47b38b1b
MD5 53b2f2ed48b9dc6199d090ab4817bdbd
BLAKE2b-256 25b2a71a3db43b0c352a9a787a4ba789535f39c1a3f563ffda232d22e9538c9c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page