Skip to main content

Jupyter-friendly Python frontend for MINUIT2 in C++

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/pypi/v/iminuit.svg https://img.shields.io/conda/vn/conda-forge/iminuit.svg https://coveralls.io/repos/github/scikit-hep/iminuit/badge.svg?branch=develop https://readthedocs.org/projects/iminuit/badge/?version=latest https://zenodo.org/badge/DOI/10.5281/zenodo.3949207.svg ascl:2108.024 https://img.shields.io/gitter/room/Scikit-HEP/iminuit https://mybinder.org/badge_logo.svg

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN’s ROOT team.

Minuit was designed to minimize statistical cost functions, for likelihood and least-squares fits of parametric models to data. It provides the best-fit parameters and error estimates from likelihood profile analysis.

The iminuit package comes with additional features:

  • Builtin cost functions for statistical fits

    • Binned and unbinned maximum-likelihood

    • Template fits with error propagation

    • Least-squares (optionally robust to outliers)

    • Gaussian penalty terms for parameters

    • Cost functions can be combined by adding them: total_cost = cost_1 + cost_2

    • Visualization of the fit in Jupyter notebooks

  • Support for SciPy minimizers as alternatives to Minuit’s MIGRAD algorithm (optional)

  • Support for Numba accelerated functions (optional)

Dependencies

iminuit is (and always will be) a lean package which only depends on numpy, but additional features are enabled if the following optional packages are installed.

  • matplotlib: Visualization of fitted model for builtin cost functions

  • ipywidgets: Interactive fitting, see example below (also requires matplotlib)

  • scipy: Compute Minos intervals for arbitrary confidence levels

  • unicodeitplus: Render names of model parameters in simple LaTeX as Unicode

Documentation

Checkout our large and comprehensive list of tutorials that take you all the way from beginner to power user. For help and how-to questions, please use the discussions on GitHub or gitter.

Lecture by Glen Cowan

In the exercises to his lecture for the KMISchool 2022, Glen Cowan shows how to solve statistical problems in Python with iminuit. You can find the lectures and exercises on the Github page, which covers both frequentist and Bayesian methods.

Glen Cowan is a known for his papers and international lectures on statistics in particle physics, as a member of the Particle Data Group, and as author of the popular book Statistical Data Analysis.

In a nutshell

iminuit can be used with a user-provided cost functions in form of a negative log-likelihood function or least-squares function. Standard functions are included in iminuit.cost, so you don’t have to write them yourself. The following example shows how to perform an unbinned maximum likelihood fit.

import numpy as np
from iminuit import Minuit
from iminuit.cost import UnbinnedNLL
from scipy.stats import norm

x = norm.rvs(size=1000, random_state=1)

def pdf(x, mu, sigma):
    return norm.pdf(x, mu, sigma)

# Negative unbinned log-likelihood, you can write your own
cost = UnbinnedNLL(x, pdf)

m = Minuit(cost, mu=0, sigma=1)
m.limits["sigma"] = (0, np.inf)
m.migrad()  # find minimum
m.hesse()   # compute uncertainties
Output of the demo in a Jupyter notebook

Interactive fitting

iminuit optionally supports an interactive fitting mode in Jupyter notebooks.

Animated demo of an interactive fit in a Jupyter notebook

Faster than RooFit

When iminuit is used with cost functions and pdfs that are JIT-compiled with numba (JIT-compiled pdfs are provided by numba_stats ), the fit is up to 10x faster compared to an equivalent fit in the RooFit framework. The gain is particularly large when numba with auto-parallelization is compared to parallel computation in RooFit.

doc/_static/roofit_vs_iminuit+numba.svg

More information about this benchmark is given in the Benchmark section of the documentation.

Partner projects

  • numba_stats provides faster implementations of probability density functions than scipy, and a few specific ones used in particle physics that are not in scipy.

  • boost-histogram from Scikit-HEP provides fast generalized histograms that you can use with the builtin cost functions.

  • jacobi provides a robust, fast, and accurate calculation of the Jacobi matrix of any transformation function and building a function for generic error propagation.

Versions

The current 2.x series has introduced breaking interfaces changes with respect to the 1.x series.

All interface changes are documented in the changelog with recommendations how to upgrade. To keep existing scripts running, pin your major iminuit version to <2, i.e. pip install 'iminuit<2' installs the 1.x series.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iminuit-2.25.0.tar.gz (2.9 MB view details)

Uploaded Source

Built Distributions

iminuit-2.25.0-cp312-cp312-win_amd64.whl (351.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

iminuit-2.25.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (415.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

iminuit-2.25.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (384.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

iminuit-2.25.0-cp312-cp312-macosx_10_9_universal2.whl (689.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.0-cp311-cp311-win_amd64.whl (351.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

iminuit-2.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (417.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

iminuit-2.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (387.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

iminuit-2.25.0-cp311-cp311-macosx_10_9_universal2.whl (685.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.0-cp310-cp310-win_amd64.whl (350.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

iminuit-2.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (416.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

iminuit-2.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (386.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

iminuit-2.25.0-cp310-cp310-macosx_10_9_universal2.whl (683.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.0-cp39-cp39-win_amd64.whl (350.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

iminuit-2.25.0-cp39-cp39-win32.whl (303.5 kB view details)

Uploaded CPython 3.9 Windows x86

iminuit-2.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (386.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

iminuit-2.25.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (384.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

iminuit-2.25.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (397.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

iminuit-2.25.0-cp39-cp39-macosx_10_9_universal2.whl (683.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.0-cp38-cp38-win_amd64.whl (350.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

iminuit-2.25.0-cp38-cp38-win32.whl (303.3 kB view details)

Uploaded CPython 3.8 Windows x86

iminuit-2.25.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (386.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

iminuit-2.25.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (384.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

iminuit-2.25.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (396.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

iminuit-2.25.0-cp38-cp38-macosx_10_9_universal2.whl (683.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file iminuit-2.25.0.tar.gz.

File metadata

  • Download URL: iminuit-2.25.0.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for iminuit-2.25.0.tar.gz
Algorithm Hash digest
SHA256 7bdf59460d390f2d03ce755c0151b2ec3d203300bc51541bf8287b43c1204c66
MD5 9ef464c856f29e4f8c656016b18837ee
BLAKE2b-256 a6e39172082f134a68e79339534dcc87fee02397ece8222e2661c6d08a521eb3

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 351.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for iminuit-2.25.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 224d16ddc22c94d06fb80b2a01806b48fd84f9ab4a72e079d8d33f46efc92591
MD5 016dd261df34d91ae6f0671bc1708161
BLAKE2b-256 06ad2229d1f671aa10913090655f21cd1efa150b8a2a6cb2f4ed16de0b125151

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8d48a562eedff4cb6c3be2db4e58555aeda400fc6417c8f250cf6d20b9f5321
MD5 10444ab7afa78961c522292c55132d14
BLAKE2b-256 651268b75f26f94fcd19f7c5d490a0d5c49321bd8d04769f7aac0f508984b98d

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 81b7a7114e021b2219d0ff802d2e2bb78d668e940f92deed269084ff84239148
MD5 0f2af4263f60c3349bcb2ffbfce08ab0
BLAKE2b-256 2e9f6a19730ebb4f968aa739e99d57ca020e15617f20c105400aef79a6f85496

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4d069ff1bd49d662d273ff3904eed38007af89bd71a94908eccba54aced00cc1
MD5 fe33339dca23993fa5b4f04ffcf9796d
BLAKE2b-256 99f50351527cea1a5bc05e0403afc92f4ee322677b1946e1befd3174c9fd57a9

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 351.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for iminuit-2.25.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2e4cc316c904680803eb977f407fef1528fda08c1cab87d50f3e5a6508230822
MD5 49702955841a7d9b828d377b18894d87
BLAKE2b-256 46419e0906fb4d415da8868b6afc883fff5768d0130bf5b18640e4b9fcf24b86

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8665f5c4553323bd7c3c2ec074078907445ae4c2cc4c4cb302ecef60cda6abb
MD5 71ffbfadee520e0889069c79504d95be
BLAKE2b-256 7218af84c0cd0acb57260c6bf1f78f51b25701f3b9bb290b30f7760f6a400d44

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5bcd931bf529818c9147d1fcea261c1b3619c1b1ef24a4e19773a071a6e1ed5b
MD5 9e298bdde8d4c7dd4c193018ed20aa3c
BLAKE2b-256 7500f211c08937332c1ccc058c7f86111227040a6152d0545bae6880b6cdb96b

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 70e4d2b996d57650abdb3cdde1db9b425c8146e8e187af94d1781fcb9385c992
MD5 da53f6002b2e46dbff1aeeb2cd251e70
BLAKE2b-256 3c47ff7f35653f9a26cbdc693013e36c1de3ed2171e319cf7b638871f49ad819

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 350.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for iminuit-2.25.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bb3a6b13fb504194c1649f63cc40592a6c80f13e9494e588194f28a2422da152
MD5 23ccea553b2a3187b78c9fe53e8968d7
BLAKE2b-256 d599221d8b363d4df24e3e177f5fea4013a339e86b5cacdf9ff77df98a946fda

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70a558127ff2687cdc23d701645954f58394832806f01a74160912b755372d49
MD5 8eff1f76f231022de843400c34406d1e
BLAKE2b-256 d203a41be6d2faadafffb5b10a29eb2cadbf0b2b47bed3fde645e8492cfc0ab5

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 63ea3bbf5e2cd7c3c85540f96a48368b5b3b5a6f466d8d60f90e3f333e39d289
MD5 6f3dade1f827b48ea699651bfe403617
BLAKE2b-256 4b1eee3c6e29cc9a7783470845b247cf33ff83228c8253468f9d89212a964b9b

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d0e3e9a8b1fc5c568a625b18298b5b5193668761455ae6f67315538614755a08
MD5 962ecbfeec9a3a0ccb7c19e5877e2354
BLAKE2b-256 edfda304e651adcfd07ab8f016a42d36b7fefa7a2902f45e68a0684f05d6ba28

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 350.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for iminuit-2.25.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c018bc32ef70d5cb424e67cb515d66659da0249fcf19d8d40e6fd377abeb273f
MD5 cf718b43b03aa46061f5747c725f9c4d
BLAKE2b-256 cffbbba8fed302e6137ce6125d5006b6cafb67d420d5e7392e8feffc920039b9

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: iminuit-2.25.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 303.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for iminuit-2.25.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d036dba1d1d2db55323aed40469f7586f6f462049301118f0125ffd8259ebdc5
MD5 2384a7736ecc78c5708e368c5d473051
BLAKE2b-256 0fc499b79a36b6a09d54a8eb6aa97fc1e4c8cc4ec07ff65ce3ed2a483de57b4b

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cfbc7ce2b8e1ac3060bd1d89b42c983b5b2069bfdf6d31b1b21a6a2fe7ebf8d1
MD5 a896167b7c219260f9b23c705abd363c
BLAKE2b-256 f6ca5cdf10a7e056e8e3ae71a10a04cfd18221e0b7acd2dcc96f98176c787d66

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bfa22ab265d62c2ab74d2e4e17a8b7c5b9c46e92d59a80f42964712fdde9c876
MD5 ee1a74182b6b049d3f35e708913ae09e
BLAKE2b-256 d1b413fed8ae4eb0ca981ca8e76a6220b87624416bd63051c1d998e3f6824499

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8c2d7325669c85cbb57f1c0ad0dbfb131caf5da8f2498216596a6dca2104e857
MD5 51fc021146cceecc2d99c9b3f3ad93c6
BLAKE2b-256 d4a21e0e85882fbcf24b3126df365174d3cbb241445e17090db6200df30ff104

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f24e353c13ab7b9e2dbbda6f85de002d7ec598a5e170e9baf0bfe7433275dbf6
MD5 ee29bfa0ad059fc6b4f6730a28847cce
BLAKE2b-256 42c9fe3ddffb854678df516b7f9bb23265c828f034a7bbf6fe9b6788692b191c

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 350.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for iminuit-2.25.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2dc39cd9961de644a9ed8c1cf424a8ab71294ead4feb92839dca37cc16003b43
MD5 6ab1e1ff265723d1f52198cd32deedcc
BLAKE2b-256 d8557d9f668d57b74c809ffeeafc931cfeeb63c2c79b342bddac50a8464ecd5a

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: iminuit-2.25.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 303.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for iminuit-2.25.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 1e9559e3be6c2f0c198b509a3efce859c6ba915fe76697d0327ae1bc926e7d33
MD5 a531d7d64de9e38330e94b35f60f3464
BLAKE2b-256 54f8c9cc5e96693a8867245bb42271b0d4fc4659b9fb59d4629867512e22a3fe

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d9e0fa5bb46545cd06a0cc2ef46c1c3297d61ba9e59055ba066f08b60e8dfd6
MD5 337a3e981d72a750a9d61600073c7a46
BLAKE2b-256 69ca22796d99394b3f619379704632180d8aba45c26b3fc3012d2bdb03515163

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c09147cf47271c02811aca2af162c6935d4d5b6fa85281da93847717aaf8494a
MD5 8f4c20c92ce1d4772d00dec8a2626cc4
BLAKE2b-256 3d8df2f71c1e3ef9f91b270964757622e6195f1b04e7b021a30b9532375d91e5

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 dec0a25ac55c9558080ca00b5418546e5cb06dd4e9028921035b9657972e046e
MD5 534eba1c8cf48a7aa0f9979a27e3ebd1
BLAKE2b-256 336b39042e24ed65560baf357e07f210352d2eb9a0a68e543f280dec4b44d258

See more details on using hashes here.

File details

Details for the file iminuit-2.25.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 17144d7c4930a9d9da3a695131f130d17456381380be46e4de00e5763f20bc1f
MD5 29a85c7fedbd610c92d2d5630de50dd6
BLAKE2b-256 ed6c4c5f5fa5e25bcf3206e1ac8798e400665d99f3f58320b014f71e7db6a9ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page