Skip to main content

Jupyter-friendly Python frontend for MINUIT2 in C++

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/pypi/v/iminuit.svg https://img.shields.io/conda/vn/conda-forge/iminuit.svg https://coveralls.io/repos/github/scikit-hep/iminuit/badge.svg?branch=develop https://readthedocs.org/projects/iminuit/badge/?version=latest https://zenodo.org/badge/DOI/10.5281/zenodo.3949207.svg ascl:2108.024 https://img.shields.io/gitter/room/Scikit-HEP/iminuit https://mybinder.org/badge_logo.svg

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN’s ROOT team.

Minuit was designed to minimize statistical cost functions, for likelihood and least-squares fits of parametric models to data. It provides the best-fit parameters and error estimates from likelihood profile analysis.

The iminuit package comes with additional features:

  • Builtin cost functions for statistical fits

    • Binned and unbinned maximum-likelihood

    • Template fits with error propagation

    • Least-squares (optionally robust to outliers)

    • Gaussian penalty terms for parameters

    • Cost functions can be combined by adding them: total_cost = cost_1 + cost_2

    • Visualization of the fit in Jupyter notebooks

  • Support for SciPy minimizers as alternatives to Minuit’s MIGRAD algorithm (optional)

  • Support for Numba accelerated functions (optional)

Dependencies

iminuit is (and always will be) a lean package which only depends on numpy, but additional features are enabled if the following optional packages are installed.

  • matplotlib: Visualization of fitted model for builtin cost functions

  • ipywidgets: Interactive fitting, see example below (also requires matplotlib)

  • scipy: Compute Minos intervals for arbitrary confidence levels

  • unicodeitplus: Render names of model parameters in simple LaTeX as Unicode

Documentation

Checkout our large and comprehensive list of tutorials that take you all the way from beginner to power user. For help and how-to questions, please use the discussions on GitHub or gitter.

Lecture by Glen Cowan

In the exercises to his lecture for the KMISchool 2022, Glen Cowan shows how to solve statistical problems in Python with iminuit. You can find the lectures and exercises on the Github page, which covers both frequentist and Bayesian methods.

Glen Cowan is a known for his papers and international lectures on statistics in particle physics, as a member of the Particle Data Group, and as author of the popular book Statistical Data Analysis.

In a nutshell

iminuit can be used with a user-provided cost functions in form of a negative log-likelihood function or least-squares function. Standard functions are included in iminuit.cost, so you don’t have to write them yourself. The following example shows how to perform an unbinned maximum likelihood fit.

import numpy as np
from iminuit import Minuit
from iminuit.cost import UnbinnedNLL
from scipy.stats import norm

x = norm.rvs(size=1000, random_state=1)

def pdf(x, mu, sigma):
    return norm.pdf(x, mu, sigma)

# Negative unbinned log-likelihood, you can write your own
cost = UnbinnedNLL(x, pdf)

m = Minuit(cost, mu=0, sigma=1)
m.limits["sigma"] = (0, np.inf)
m.migrad()  # find minimum
m.hesse()   # compute uncertainties
Output of the demo in a Jupyter notebook

Interactive fitting

iminuit optionally supports an interactive fitting mode in Jupyter notebooks.

Animated demo of an interactive fit in a Jupyter notebook

Faster than RooFit

When iminuit is used with cost functions and pdfs that are JIT-compiled with numba (JIT-compiled pdfs are provided by numba_stats ), the fit is up to 10x faster compared to an equivalent fit in the RooFit framework. The gain is particularly large when numba with auto-parallelization is compared to parallel computation in RooFit.

doc/_static/roofit_vs_iminuit+numba.svg

More information about this benchmark is given in the Benchmark section of the documentation.

Partner projects

  • numba_stats provides faster implementations of probability density functions than scipy, and a few specific ones used in particle physics that are not in scipy.

  • boost-histogram from Scikit-HEP provides fast generalized histograms that you can use with the builtin cost functions.

  • jacobi provides a robust, fast, and accurate calculation of the Jacobi matrix of any transformation function and building a function for generic error propagation.

Versions

The current 2.x series has introduced breaking interfaces changes with respect to the 1.x series.

All interface changes are documented in the changelog with recommendations how to upgrade. To keep existing scripts running, pin your major iminuit version to <2, i.e. pip install 'iminuit<2' installs the 1.x series.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iminuit-2.25.1.tar.gz (2.9 MB view details)

Uploaded Source

Built Distributions

iminuit-2.25.1-cp312-cp312-win_amd64.whl (351.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

iminuit-2.25.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (415.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

iminuit-2.25.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (384.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

iminuit-2.25.1-cp312-cp312-macosx_10_9_universal2.whl (689.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.1-cp311-cp311-win_amd64.whl (351.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

iminuit-2.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (417.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

iminuit-2.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (387.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

iminuit-2.25.1-cp311-cp311-macosx_10_9_universal2.whl (685.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.1-cp310-cp310-win_amd64.whl (350.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

iminuit-2.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (416.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

iminuit-2.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (386.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

iminuit-2.25.1-cp310-cp310-macosx_10_9_universal2.whl (683.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.1-cp39-cp39-win_amd64.whl (350.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

iminuit-2.25.1-cp39-cp39-win32.whl (303.6 kB view details)

Uploaded CPython 3.9 Windows x86

iminuit-2.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (386.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

iminuit-2.25.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (384.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

iminuit-2.25.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (398.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

iminuit-2.25.1-cp39-cp39-macosx_10_9_universal2.whl (683.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.1-cp38-cp38-win_amd64.whl (350.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

iminuit-2.25.1-cp38-cp38-win32.whl (303.4 kB view details)

Uploaded CPython 3.8 Windows x86

iminuit-2.25.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (386.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

iminuit-2.25.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (384.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

iminuit-2.25.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (396.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

iminuit-2.25.1-cp38-cp38-macosx_10_9_universal2.whl (683.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file iminuit-2.25.1.tar.gz.

File metadata

  • Download URL: iminuit-2.25.1.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.1.tar.gz
Algorithm Hash digest
SHA256 b829ffc1db5ed671dcd1a49e04593776e6575cf3a66cc7ce7477fc66423f863e
MD5 fa0bcc6d3ce8d2b6286f5af5efb39649
BLAKE2b-256 75d53f6fab636a6406bf960477b26d81302bf7414d2ecef87e8b4c5bcfdf99fe

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 351.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ea2ea7f938fc5daedd6b008d6dc98dcd3840860f198bc13d4dbe1ef7cf2f44f7
MD5 ca78749bded51b9d8de6201fc69b658d
BLAKE2b-256 7c5acdab3c648b32c3f6abd8c3d1ca1d4a228a1ac061cfb05cca5437fd04b1b7

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d7903289dccae648d59723137aad03524dae17d1e4546f1242a61474e4e8a87
MD5 8c3b541ab335cb02f1cdb7073d485409
BLAKE2b-256 07de5596220f242101c4f895ffabd3121c9a24460b56d1b983a7086c496f19da

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 90f22b32728f13664cff53af66f67f07f487dcd20cfb7663e7e0cce8980c9fa8
MD5 b2d7cd9ef1881f384ecb45d0ecd9518a
BLAKE2b-256 6c7adbbd671a41273b61132d98d8b2d6ac82f05adfc1e2833a2adb48f5e0da51

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7e6a7a30c214e5da37b1bf3c03750ba8bbbd9135d9a31bae57df80e437286013
MD5 a2c9119c6695d49b478dc972a0e6a46d
BLAKE2b-256 10da13db0c7dbb45a12de4d6c2f97cf599be994d47ca23b5f8700a2f145e12d2

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 351.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b78e208b283dd11609665e80fcb7622be4c98e882487b8a008e924d0754a779e
MD5 47d3c40e2662071ba0b651d6c69c5189
BLAKE2b-256 c8680f2e4764838a54311449fe3f80ebc144a5aa5ad933fdf0b37257d25b9f14

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba2db85b9583f7bcdde69df59cccad7ff79e759cd8949c8ff401114d9b32649b
MD5 8663a2eee03071092e72e5f064696c73
BLAKE2b-256 8d32c69cc297d1027c77d96246adfd21e01e7d4531f2f7f3fb577d927a6da599

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1255f9216f4b0e5b92d55b1b6ea12557ea3e13cdcfa9888982408a13977bb495
MD5 64f0ddebbd5f54e6a70760e20fbb7b83
BLAKE2b-256 39b81bd6142f4ffef27c702cd99e721f9134afd10cf2e46a207f1b21fdcd54e9

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f03af5dcb2327dea07f3372af1bf1bbeabce8964385641909f14d2bc1c1e3b0f
MD5 56c0a0afe4134d88b8caf306ab3477cf
BLAKE2b-256 e2ed045718ad036c1d661933f9b6fbd131c3d51add93dcd5bfb31b9dee03fe4b

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 350.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 24c470eb7349ae80fa7e9351962db5d3182c799e437aa1a764be96be7c94b3bc
MD5 dfd94791c129ab9b2bd855fae3a104a0
BLAKE2b-256 171ae4aeb1bba16692cb6d83f6a484e7561d7a53a6169bc421021816ae4d8106

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d2341dc9576b1917a4b19515b26f3a4d80f05c21957126195384cf36142529b
MD5 2ec13167f5840f2e5d816dda5f9042a7
BLAKE2b-256 0fa52e951cf042388c3981c5f99fdbd14863b0824752df1562a9cb95db7702d6

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 62543490f342da434dc1b33d1a25ee2fb6c40c307720b2ee7a274d0267ebfe3e
MD5 1d05eb0eb9d61a821cc9a9205a2ee00f
BLAKE2b-256 59533eadd277d4abb7d86c747f0bae2d409e1f5e064a39a6b2b0cfa08256945f

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e26fd2efce810585543005ccd288f2dc62d9380f40fa1c547470d4c004f53b4b
MD5 4202342b73a61c993fedda2bace27997
BLAKE2b-256 372604016df08b4ee99964c8cb5d0b311ccb1d06a305533c1377589e85203eeb

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 350.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3dc3af5f6a59ce7aaa1a477bd923b7852ef95323338d8b55e7ffff0c94d4f24b
MD5 e747bc80c51c34741c658dffc51ff5c1
BLAKE2b-256 aeb918379a80056bab20c00de3e7c85e0246fd1c851c78548b34994522d1af15

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: iminuit-2.25.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 303.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0d0fdb7368b7115712307dd5899fbd43283a1ee7f8023d05a44b82ec5862f7e1
MD5 f5801317d2700e43a8dc0a7921769b57
BLAKE2b-256 d6976cf07eea12002e081ce57e6b73a50f607a4314a555b07c137d58db37c981

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6c0d079b1afea197ae026ca5abe30253bcd713244c6b4b337dc1c78070e8e6db
MD5 c7911b64d376f0f79edd2ea465cd003d
BLAKE2b-256 d6aba127ad7696e9e4405c51dc3f22e45799deae0d7809cb0f79cec70e30d5f2

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 55dc66c43fea6e56d73d7f9f0921682d5582a7d46ab50f9aa4053b62853af343
MD5 04bb1bd6bc19aaa11e875d2552a3940b
BLAKE2b-256 7c8ce03b4983b342b52b67b5e2892b858b1d994481c7c87dec5362a26c5159d6

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 31ba73df2ab75c8c68f25ec8f741faf9585071d275d02c02a21df7d4c89b1df1
MD5 04e3c362556545e1921b028ed780ef70
BLAKE2b-256 70c43cbb2d7ae578a1f97c12d5be7e93c53e57aa76474c6fb04fcc8c999c5a6c

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 074518d0c0f1587b79e37b7272e4365d4f72f9841013573091459506e1b8763e
MD5 db215f6ac6a926c466bd3aadf9d0eedf
BLAKE2b-256 ea648a2b6b68aa98a6fc999b959a14ac471f2ebebf8428a2e958d79629dc4480

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 350.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 42f27a5f1bca02e9d3b1fb0726bbfc12330043938eb9e2961f3fb5f6354acd85
MD5 22003f9fc88de5dd2bfeae17cb697f63
BLAKE2b-256 3e0da863e40ac77c5d86c68c93b1f104dd48a7f7a2c95495741ae290a168a76b

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: iminuit-2.25.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 303.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2f42abd8141d92576feb12bde2f69619ac1fd68e6eeda0a9403f74c1bace9f21
MD5 520c25340a63f6e318c52f7b815c9c12
BLAKE2b-256 c79d696ca586cbcc798b71f9a4e395137ba5db3fc9484c4305c103279a7d3ff9

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 db93f4bd3880e2366945cdf76c69395329dd5c60094140ce6bca95f1a0189aa8
MD5 c953ab2f1353a76f3f78ef0cbfb0c126
BLAKE2b-256 fbf6202d526400bab02a1c6dc5594e96d38b51174cebb864d2cc5e54ed8242f6

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6d8cf6635de5ec9be689bd435c6945d5ea24179cccb935c02b45b326515d8dd0
MD5 41e218294a8676fce78c5343c2d60fed
BLAKE2b-256 b8af34b354dfdb77908c259ab0bbda1936336489f0cfaf9a63ae6a4c12f0d287

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 503103528584dfe24e4f80be83c8135899724887824205de4fb0abfd584a85e5
MD5 2455699f43c1067c2ea4a07993638d61
BLAKE2b-256 a7427dd5d10f7aa3177223c805a93ae4b9e4a6936ee96a41876633a82691c147

See more details on using hashes here.

File details

Details for the file iminuit-2.25.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 61e8cd8169c61fae60cdc011c9e664dd8b843657968a4970a5e1887b5207f83e
MD5 b25ed983bb568c88de19b86a90d3efcb
BLAKE2b-256 6e1677b36fa5cccb251812978cc62e17c92eb812858e5439cb4d374ba5aee105

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page