Skip to main content

Jupyter-friendly Python frontend for MINUIT2 in C++

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/pypi/v/iminuit.svg https://img.shields.io/conda/vn/conda-forge/iminuit.svg https://coveralls.io/repos/github/scikit-hep/iminuit/badge.svg?branch=develop https://github.com/scikit-hep/iminuit/actions/workflows/docs.yml/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.3949207.svg ascl:2108.024 https://img.shields.io/gitter/room/Scikit-HEP/iminuit https://mybinder.org/badge_logo.svg

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN’s ROOT team.

Minuit was designed to optimize statistical cost functions, for maximum-likelihood and least-squares fits. It provides the best-fit parameters and error estimates from likelihood profile analysis.

The iminuit package brings additional features:

  • Builtin cost functions for statistical fits to N-dimensional data

    • Unbinned and binned maximum-likelihood + extended versions

    • Template fits with error propagation

    • Least-squares (optionally robust to outliers)

    • Gaussian penalty terms for parameters

    • Cost functions can be combined by adding them: total_cost = cost_1 + cost_2

    • Visualization of the fit in Jupyter notebooks

  • Support for SciPy minimizers as alternatives to Minuit’s MIGRAD algorithm (optional)

  • Support for Numba accelerated functions (optional)

Minimal dependencies

iminuit is promised to remain a lean package which only depends on numpy, but additional features are enabled if the following optional packages are installed.

  • numba: Cost functions are partially JIT-compiled if numba is installed.

  • matplotlib: Visualization of fitted model for builtin cost functions

  • ipywidgets: Interactive fitting, see example below (also requires matplotlib)

  • scipy: Compute Minos intervals for arbitrary confidence levels

  • unicodeitplus: Render names of model parameters in simple LaTeX as Unicode

Documentation

Checkout our large and comprehensive list of tutorials that take you all the way from beginner to power user. For help and how-to questions, please use the discussions on GitHub or gitter.

Lecture by Glen Cowan

In the exercises to his lecture for the KMISchool 2022, Glen Cowan shows how to solve statistical problems in Python with iminuit. You can find the lectures and exercises on the Github page, which covers both frequentist and Bayesian methods.

Glen Cowan is a known for his papers and international lectures on statistics in particle physics, as a member of the Particle Data Group, and as author of the popular book Statistical Data Analysis.

In a nutshell

iminuit can be used with a user-provided cost functions in form of a negative log-likelihood function or least-squares function. Standard functions are included in iminuit.cost, so you don’t have to write them yourself. The following example shows how to perform an unbinned maximum likelihood fit.

import numpy as np
from iminuit import Minuit
from iminuit.cost import UnbinnedNLL
from scipy.stats import norm

x = norm.rvs(size=1000, random_state=1)

def pdf(x, mu, sigma):
    return norm.pdf(x, mu, sigma)

# Negative unbinned log-likelihood, you can write your own
cost = UnbinnedNLL(x, pdf)

m = Minuit(cost, mu=0, sigma=1)
m.limits["sigma"] = (0, np.inf)
m.migrad()  # find minimum
m.hesse()   # compute uncertainties
Output of the demo in a Jupyter notebook

Interactive fitting

iminuit optionally supports an interactive fitting mode in Jupyter notebooks.

Animated demo of an interactive fit in a Jupyter notebook

High performance when combined with numba

When iminuit is used with cost functions that are JIT-compiled with numba (JIT-compiled pdfs are provided by numba_stats ), the speed is comparable to RooFit with the fastest backend. numba with auto-parallelization is considerably faster than the parallel computation in RooFit.

doc/_static/roofit_vs_iminuit+numba.svg

More information about this benchmark is given in the Benchmark section of the documentation.

Partner projects

  • numba_stats provides faster implementations of probability density functions than scipy, and a few specific ones used in particle physics that are not in scipy.

  • boost-histogram from Scikit-HEP provides fast generalized histograms that you can use with the builtin cost functions.

  • jacobi provides a robust, fast, and accurate calculation of the Jacobi matrix of any transformation function and building a function for generic error propagation.

Versions

The current 2.x series has introduced breaking interfaces changes with respect to the 1.x series.

All interface changes are documented in the changelog with recommendations how to upgrade. To keep existing scripts running, pin your major iminuit version to <2, i.e. pip install 'iminuit<2' installs the 1.x series.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iminuit-2.25.2.tar.gz (2.9 MB view details)

Uploaded Source

Built Distributions

iminuit-2.25.2-cp312-cp312-win_amd64.whl (361.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

iminuit-2.25.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (423.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

iminuit-2.25.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (391.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

iminuit-2.25.2-cp312-cp312-macosx_10_9_universal2.whl (708.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.2-cp311-cp311-win_amd64.whl (361.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

iminuit-2.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (426.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

iminuit-2.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (395.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

iminuit-2.25.2-cp311-cp311-macosx_10_9_universal2.whl (703.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.2-cp310-cp310-win_amd64.whl (360.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

iminuit-2.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (424.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

iminuit-2.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (393.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

iminuit-2.25.2-cp310-cp310-macosx_10_9_universal2.whl (701.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.2-cp39-cp39-win_amd64.whl (360.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

iminuit-2.25.2-cp39-cp39-win32.whl (311.0 kB view details)

Uploaded CPython 3.9 Windows x86

iminuit-2.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (394.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

iminuit-2.25.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (392.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

iminuit-2.25.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (405.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

iminuit-2.25.2-cp39-cp39-macosx_10_9_universal2.whl (701.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

iminuit-2.25.2-cp38-cp38-win_amd64.whl (360.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

iminuit-2.25.2-cp38-cp38-win32.whl (310.7 kB view details)

Uploaded CPython 3.8 Windows x86

iminuit-2.25.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (393.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

iminuit-2.25.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (391.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

iminuit-2.25.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (404.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

iminuit-2.25.2-cp38-cp38-macosx_10_9_universal2.whl (701.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file iminuit-2.25.2.tar.gz.

File metadata

  • Download URL: iminuit-2.25.2.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.2.tar.gz
Algorithm Hash digest
SHA256 3bf8a1b96865a60cedf29135f4feae09fa7c66237d29f68ded64e97a823a9b3e
MD5 63e6eac1b2137c2724fb91f0d527141c
BLAKE2b-256 78f1416e559122a3872878853429a87143b4b4f5d33e23c1317be8a270e875aa

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 361.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 893763d0c59c33cbbfc32c50d43d878911edf81d84732bdfccc0ff26a6cac815
MD5 cd8fbd221d79e24d8b09d565b5a83b71
BLAKE2b-256 827fd233e30f2cde1b8f9ec9d3105d57c4e7938f7ec88dcff2a4ab3437c168ff

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3bf1273fd6eaa9f3d63d87af1a29aca5ff5ba21f47133aafdc46f2abad80394e
MD5 5b7b2ad911c7c41a35e119dd903b026e
BLAKE2b-256 f662718e0c58bb78a2b93e4f4278331b25e61d0a9be491eb589b91c76b4fe716

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74d84516f129ae95c3ac781e057916811d4e78579986257d08eab93870a29104
MD5 aeb90d74be8cc533e4c1a4753c5d838c
BLAKE2b-256 97a56498a503772c981b056fff987d51e48db048261d1bfc9ca3522523ad6e44

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9b8fe9b4bd7c6fa39690ff0d82e35bfb7a4567afcbb87b52eeb4c3bb9be09e5c
MD5 dc74a713d17d3a81360f5b8357507f33
BLAKE2b-256 7efd558fe641e156d8ddbb7f38a5d04b15c6cc2ce8b66783839fe2592f238a23

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 361.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f6d97481ec83f67a077517e2bb381ec3129120785e5507d9889ea163d83968f4
MD5 f76234e72019327003fd179e4a0a11d5
BLAKE2b-256 baceaca1fe821e46b98b37512a9a53318aa6ff13da2c44c65cee1bc8f1c6cf00

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32df5f6ed57be0b314444df532bd4e914d7481308773968d98de3c2864da6602
MD5 d74157f850082df4dce22e95690baec4
BLAKE2b-256 1d9ef835359a4c789e4a0aed7d00545d3c2b8a3268b06272c69e08229bc16a88

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8d3fcca57172b0ea065489fceff54878b34e2f4ea92a53def006cd96b1712fd
MD5 7f6168e8f473a125d3b7e6e939103c45
BLAKE2b-256 4bfde4d0b44508be65a66d626b2a6d2f872453fb83a3bbd3b1bda7f04261d093

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8a22dee5988df325b9833843ed5c2af9085a7b346e3c6dd402d66f490d4e618d
MD5 129eca3d114c46ede685f04994edf113
BLAKE2b-256 90b8b18f985564e3c4f469ca8d3f010c477d7d82df9ce239f78659f913f398a1

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 360.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 42b5ed7d4557d51e8ce2faa15fc392b53059164be52e48acad9ec2761f4812dc
MD5 3a19bd4d41f8a8dde905782bca69cadc
BLAKE2b-256 53f71682fcec8ac36c81cd09a48581a0ec1a90b9089c5de7b725d9d11c8a269c

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c06f1e335cfcba0fa4be71e529fa5d8e61e7f4d38d3aa16f127591ad5298937e
MD5 8cc0a337c7e0160b489b65b1378e73df
BLAKE2b-256 1cb5f6959d737164678e316428d84961ff8a2395b8d4ea16aafc6fbbbd5d1782

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b902fa21fe04990f3dee4cb8f12089db2264af4cbe0f6cd4cf217e13114fa45
MD5 49c15cb0e8570388f96e9eac43910807
BLAKE2b-256 4932a6904b016a6c2c3c68a4aaf47fd1c7ca558d3f136b2ec9c3cbceda3bad9b

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d6af4da0ac6205144a2450ee16f2cafb4762546ba4ee5de9c6ab385263aaa0fe
MD5 2d261ce44680c4951b4100461a08e864
BLAKE2b-256 0df47364122ba86814200f37cdec478f9ac8f8376dd938c05fa8214856f43142

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 360.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 636eb206dd1e6bf66e9fa33ffe5bc269f9d70a0bdf63660383887f2c45c3228e
MD5 d17786ef0bbc8df05a7831f334718334
BLAKE2b-256 fbd3d3f894ea014b3e83db5eaadbf2e3e41a830ae3983889cfacd99227bee1ac

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: iminuit-2.25.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 311.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7de3c2409a21a241fe3013791939989b7b087a19a18123caf3c9825731b6625f
MD5 6dd8e89d5919d37d7162da5468b93f7f
BLAKE2b-256 f33043920fb2a56f96a4de263a96064235f6679c5f56f9abcf66b9d6a32bb5f9

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba5d1939fac13d9db454d33a5faba54833a06a37e9f6d3b5c739f3b8b276d77c
MD5 f587f0f81bb2726d03a0c61bbe55512e
BLAKE2b-256 6fc64270b57dac09934f2b2f98072fdbbee47f503a44970d1f54cd49aa42b608

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 793fcba250495763663438be251eca67c535ffb73a2d3430635cd72ce4ececb6
MD5 a934da09b90314444663cc2d33fad34c
BLAKE2b-256 24ea185fa732cf0a5abaf11a4b21f56fe817fd6e3b97bbda32fcf122f6f4b382

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b13d5ef1ce606925f3c980a10271e62531dc8bbbc987c156f7521e7818c8c2c7
MD5 cc699c57558e84394613abb4a0d489fe
BLAKE2b-256 5ba02c843b8e8ffbe5da0c695f8da2ae7a2b70f492c8c067c90bc93cf474c405

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 97919de92075d6651a8d30660683035987488f633be2e25927f1b7fe7a42a4c0
MD5 202656f2334978ab85db214c28cb9b6f
BLAKE2b-256 d03823e7dc9ed05aef4b88930c01a9b49a5e3a39bb292b82fde29280bfd87af3

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.25.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 360.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 760afa748710710382e69dad01f24d0b92435a11cfd59a1ec2752a3de8ad246b
MD5 9e202289991aa5c2fb10c8a89a1bae19
BLAKE2b-256 451047b61cab767cc0f3ffd14527b1480bae9de3756f3e6bcf2776c1ca5300eb

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: iminuit-2.25.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 310.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for iminuit-2.25.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8fe126ceedd50453b4e7a7e4e9de3d137904ebe6247431ea2e21ddd5db9b43eb
MD5 3e498d6ba8af08f9c583bf04a789380a
BLAKE2b-256 942c05d0233858f4da9369e32b643cb42b7a56914c165c49e40dad3cdd07e142

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6347c3a9017a08d12e8374b31d950fafdfce0d8ee5f51358a2587b18f5b41529
MD5 56720ec1c01ee87c4a846096083a0de7
BLAKE2b-256 779482cda0cd9bc6e5056d2db33edb13673a72b8ff7e9d1737d9e19ac5ac6fe7

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1fe8d7589d4802f7c096f4bc63584de2516e2f7a6ebf065e0fef3b3a3e28dda5
MD5 e784ecd049b580dd58f2ab07122a7a0c
BLAKE2b-256 71c782d4f02d4f97799c6429227fa4e3517e1745d5431236cbe831b98d5a083d

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 afa772ba093827361bc7d27ecc832be919636f966e075d617ffc99174d7c725f
MD5 8576de3a31cd957a1bddfdb524b87dde
BLAKE2b-256 509bf235fb66b67f863088f117d9a322d063bd073296f57576cf0e3ed370fad8

See more details on using hashes here.

File details

Details for the file iminuit-2.25.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for iminuit-2.25.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b91ab6854406f1bb09177f8d67fe1a804038ea4c44f8cd7a027d700bbb99e9f0
MD5 10a219978eb9b98293ba5816702eb4d2
BLAKE2b-256 10daa93d54cea5ed34030af42cd3219db3b7e94ab9a7f5308e3eec19312bd502

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page