Skip to main content

Jupyter-friendly Python frontend for MINUIT2 in C++

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/pypi/v/iminuit.svg https://img.shields.io/conda/vn/conda-forge/iminuit.svg https://coveralls.io/repos/github/scikit-hep/iminuit/badge.svg?branch=develop https://github.com/scikit-hep/iminuit/actions/workflows/docs.yml/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.3949207.svg ascl:2108.024 https://img.shields.io/gitter/room/Scikit-HEP/iminuit https://mybinder.org/badge_logo.svg

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN’s ROOT team.

Minuit was designed to optimize statistical cost functions, for maximum-likelihood and least-squares fits. It provides the best-fit parameters and error estimates from likelihood profile analysis.

The iminuit package brings additional features:

  • Builtin cost functions for statistical fits to N-dimensional data

    • Unbinned and binned maximum-likelihood + extended versions

    • Template fits with error propagation

    • Least-squares (optionally robust to outliers)

    • Gaussian penalty terms for parameters

    • Cost functions can be combined by adding them: total_cost = cost_1 + cost_2

    • Visualization of the fit in Jupyter notebooks

  • Support for SciPy minimizers as alternatives to Minuit’s MIGRAD algorithm (optional)

  • Support for Numba accelerated functions (optional)

Minimal dependencies

iminuit is promised to remain a lean package which only depends on numpy, but additional features are enabled if the following optional packages are installed.

  • numba: Cost functions are partially JIT-compiled if numba is installed.

  • matplotlib: Visualization of fitted model for builtin cost functions

  • ipywidgets: Interactive fitting, see example below (also requires matplotlib)

  • scipy: Compute Minos intervals for arbitrary confidence levels

  • unicodeitplus: Render names of model parameters in simple LaTeX as Unicode

Documentation

Checkout our large and comprehensive list of tutorials that take you all the way from beginner to power user. For help and how-to questions, please use the discussions on GitHub or gitter.

Lecture by Glen Cowan

In the exercises to his lecture for the KMISchool 2022, Glen Cowan shows how to solve statistical problems in Python with iminuit. You can find the lectures and exercises on the Github page, which covers both frequentist and Bayesian methods.

Glen Cowan is a known for his papers and international lectures on statistics in particle physics, as a member of the Particle Data Group, and as author of the popular book Statistical Data Analysis.

In a nutshell

iminuit can be used with a user-provided cost functions in form of a negative log-likelihood function or least-squares function. Standard functions are included in iminuit.cost, so you don’t have to write them yourself. The following example shows how to perform an unbinned maximum likelihood fit.

import numpy as np
from iminuit import Minuit
from iminuit.cost import UnbinnedNLL
from scipy.stats import norm

x = norm.rvs(size=1000, random_state=1)

def pdf(x, mu, sigma):
    return norm.pdf(x, mu, sigma)

# Negative unbinned log-likelihood, you can write your own
cost = UnbinnedNLL(x, pdf)

m = Minuit(cost, mu=0, sigma=1)
m.limits["sigma"] = (0, np.inf)
m.migrad()  # find minimum
m.hesse()   # compute uncertainties
Output of the demo in a Jupyter notebook

Interactive fitting

iminuit optionally supports an interactive fitting mode in Jupyter notebooks.

Animated demo of an interactive fit in a Jupyter notebook

High performance when combined with numba

When iminuit is used with cost functions that are JIT-compiled with numba (JIT-compiled pdfs are provided by numba_stats ), the speed is comparable to RooFit with the fastest backend. numba with auto-parallelization is considerably faster than the parallel computation in RooFit.

doc/_static/roofit_vs_iminuit+numba.svg

More information about this benchmark is given in the Benchmark section of the documentation.

Partner projects

  • numba_stats provides faster implementations of probability density functions than scipy, and a few specific ones used in particle physics that are not in scipy.

  • boost-histogram from Scikit-HEP provides fast generalized histograms that you can use with the builtin cost functions.

  • jacobi provides a robust, fast, and accurate calculation of the Jacobi matrix of any transformation function and building a function for generic error propagation.

Versions

The current 2.x series has introduced breaking interfaces changes with respect to the 1.x series.

All interface changes are documented in the changelog with recommendations how to upgrade. To keep existing scripts running, pin your major iminuit version to <2, i.e. pip install 'iminuit<2' installs the 1.x series.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iminuit-2.26.0.tar.gz (2.9 MB view details)

Uploaded Source

Built Distributions

iminuit-2.26.0-cp312-cp312-win_amd64.whl (363.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

iminuit-2.26.0-cp312-cp312-win32.whl (315.4 kB view details)

Uploaded CPython 3.12 Windows x86

iminuit-2.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (426.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

iminuit-2.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (394.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

iminuit-2.26.0-cp312-cp312-macosx_11_0_arm64.whl (362.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

iminuit-2.26.0-cp312-cp312-macosx_10_9_x86_64.whl (400.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

iminuit-2.26.0-cp311-cp311-win_amd64.whl (362.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

iminuit-2.26.0-cp311-cp311-win32.whl (314.9 kB view details)

Uploaded CPython 3.11 Windows x86

iminuit-2.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (428.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

iminuit-2.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (396.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

iminuit-2.26.0-cp311-cp311-macosx_11_0_arm64.whl (362.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

iminuit-2.26.0-cp311-cp311-macosx_10_9_x86_64.whl (398.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

iminuit-2.26.0-cp310-cp310-win_amd64.whl (361.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

iminuit-2.26.0-cp310-cp310-win32.whl (313.9 kB view details)

Uploaded CPython 3.10 Windows x86

iminuit-2.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (427.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

iminuit-2.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (395.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

iminuit-2.26.0-cp310-cp310-macosx_11_0_arm64.whl (361.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

iminuit-2.26.0-cp310-cp310-macosx_10_9_x86_64.whl (397.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

iminuit-2.26.0-cp39-cp39-win_amd64.whl (361.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

iminuit-2.26.0-cp39-cp39-win32.whl (314.2 kB view details)

Uploaded CPython 3.9 Windows x86

iminuit-2.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (395.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

iminuit-2.26.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (393.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

iminuit-2.26.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (407.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

iminuit-2.26.0-cp39-cp39-macosx_11_0_arm64.whl (361.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

iminuit-2.26.0-cp39-cp39-macosx_10_9_x86_64.whl (397.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

iminuit-2.26.0-cp38-cp38-win_amd64.whl (361.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

iminuit-2.26.0-cp38-cp38-win32.whl (314.0 kB view details)

Uploaded CPython 3.8 Windows x86

iminuit-2.26.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (395.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

iminuit-2.26.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (393.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

iminuit-2.26.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (407.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

iminuit-2.26.0-cp38-cp38-macosx_11_0_arm64.whl (361.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

iminuit-2.26.0-cp38-cp38-macosx_10_9_x86_64.whl (397.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file iminuit-2.26.0.tar.gz.

File metadata

  • Download URL: iminuit-2.26.0.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0.tar.gz
Algorithm Hash digest
SHA256 a51233fbf1c2e008aa584f9eea65b6c30ed56624e4dea5d4e53370ccd84c9b4e
MD5 32ee51a8cef8e977d2d509c910778960
BLAKE2b-256 e9f198215dede1a87391dfb2ba13e99bd55498818b4fd6f8b546e0766b2be21a

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.26.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 363.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5c2e06338828931a910b942ec55ed33d450bcc4aca86f402e61752e881f38610
MD5 d63ed27b645cea6b4039477f78279096
BLAKE2b-256 4e09a211fb6a8575eed461eaaa974e0977befcf60168a7937139ac9da6645a63

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: iminuit-2.26.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 315.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 61c3d70026dd837bad971bda9d10d5d7a500dbb0e57eed3e30bff49e1136a764
MD5 16dc69b1b0be0ee518bdf8766eced8c4
BLAKE2b-256 7cbbe2452c8ef3f5bd74af29246049504ab3fb52e4ea5fb9c730c4348fa71423

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88122bbaa9f6da22f28a5ec2bc259f605167081cd0a4f19597473411dd62d1bc
MD5 34822177ae3c9fa552e22475f74ce6f3
BLAKE2b-256 48aa12c74ba258cfb8078fd834b46c523e227bb63b98e20cd1652ec203528cb5

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ffd9f284c6ae070dd9d8540474096cf65fb96c2950dc7025707241b10ed5b032
MD5 431443931d92cc99e76bb8fc39f76b8c
BLAKE2b-256 200e43c11aa5f4f5779a4996583908602dbc9fbc2f5ee8c49366378a7383d9a6

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a1f005e2ee7c8ca9f8a6aec005e8380b0cc897db912088941faf29783087f5e
MD5 5fa809caf01efb9fd379305066be35a0
BLAKE2b-256 5868ddb28c659fa2d0cc62260cccda0952843c802959197b17e24ef08bedc1de

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dbaa9532f129eb74ba0a5691efd6381421a6ae36e59b84c651f413033f25c5d4
MD5 a7f9e3a5c3f37177377238c1ee0831e5
BLAKE2b-256 9720c3685cefe81729edddb3f213ed40814dad413822dfc30927bff9b8db9775

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.26.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 362.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0adef729d9419184c1af73831656b9c503251dc3d225c0181ccd29d2167fc115
MD5 b522389c86fff3e83472b05fe024930c
BLAKE2b-256 4a2cb3e6f8e3cb5cbe99bc1e03e9d4ad719fe6acfca6395f1249badccfe08b40

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: iminuit-2.26.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 314.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a5a898cf2cca9f44f21b10ddfe30ab20c7888047d3845a1af4f5aef4b37ea44b
MD5 3019adf31fccfe689a9303a820051002
BLAKE2b-256 534a82ad61896b601dc3375f1b4f5a42705c9dbb46a8d806b6a8ca3a0f7aba46

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b32825029cebbc0df3b85cbdb389d7edf4bf608bd09d1f19efa098fbbfefaf4
MD5 dedafc5421f88c5913cd54a14e10cb48
BLAKE2b-256 0a36184f49b4381e32dbe2792386aa31b50cdb789c96dac4dad0f8317062e6ee

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c44763d71c692f62d9ffca965533b7d5e79ef9d3e845277e3fceb409d550491
MD5 fb02dc95fdc899e818e05120500f40d3
BLAKE2b-256 57b6159db96811c880e1399dfd875255f4e707e071708765541219a64a9782be

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f98905a7b0d4ad33ca6f2ed3502b8d811d0eaa09f5e6bff17ebc5ff0e44be2c2
MD5 a2191cd384c670f25b1667bc01252fce
BLAKE2b-256 894c8756bea9e5c13ba63e07fb41908ffb2be284e906fb19a30283fec382093a

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11d2f2c2ebaa061f7514d3789dbd578a345f4fc576820498d4b184dd50f7972b
MD5 faee70b9e6f0a7734da5642ca8b5ac62
BLAKE2b-256 7075f4c52b2dd618fb15235428120942328394e34004e74bd64090df9a81f8c2

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.26.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 361.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 15f3a162e7afca7ed47a24f5e782b9ed5e4d796d7aa65826fd2cc5d7454c7ee0
MD5 5b1895d254314fc849b3281a6e0327b9
BLAKE2b-256 d35e992af974757146862a027fadd9e5950be2d6f18c884a81115c8d84635f2c

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: iminuit-2.26.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 313.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7d22ed8fd464a8552849d14d2f261fd193c9aef9c8e1d77910213369d3a08edf
MD5 5ae85199364b8760251e496a11d1a121
BLAKE2b-256 f7602b6f1a5f10a07807b565ed6f86949019f89458e1558171bb01f11b752737

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94a0f75fa5a19c39c29f69c3b40095e443755e2b8701e6ac697430a073b34d72
MD5 4991998373caa7ff620581d51afff01e
BLAKE2b-256 759c36cc591a7168033cd2bfcc9d8481d302b305ca739f9410938baf77c41f8e

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0911ab2a33ace5c3494a3774c425fb0f10a7a4e37ddc9d392500a1cd3503d9e8
MD5 1580b40673ecb9f99a56c7547cd2424d
BLAKE2b-256 d440b913a87f274f7575798a6fa4091b9bf981d7553bb400a3dc00cb05723625

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e075d5a3edf28a5a17ee586c8f9ee408cbf9cb399da755059271a6a6aa219ce
MD5 8644263f576863efbe514942a624616f
BLAKE2b-256 90740afe83d6d014f87dea0da14fc7495da84730285a96be23ae0ea915f520a6

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93ba2b45a07ed6c248ce0bd8500b5289e34d55cb59badb24c2bd6d93e875c09c
MD5 7824c092f758aa4cb3596fccdfbab051
BLAKE2b-256 1c0962479277d8053f5fc13a165273e274ebc758906fb6d65d6cacdc43d6d849

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.26.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 361.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 14bf6d8fd593d9051d98cf38ac4f7941e85cc556d745ca37ab89657e6fc18d2e
MD5 f363582783a278ce88066306a9b3ce0a
BLAKE2b-256 bb293837ff372b8ed7d1fc601ca4934c7029de4412fb54f0aedab96a529c53e1

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: iminuit-2.26.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 314.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2e4578b987236cc41712dcbc71494bd784d9b6a76514a033afe4d905125b02d5
MD5 38009684d7a3ef088a6ddad89e13d8ba
BLAKE2b-256 a341771078e738d764b205c6e23437db2e150673412f679a72f913a04c73b8db

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cdfc5aae7ba256dcba3006cd6dc24274fc0c25d27c86fa2a4ade2a26fcde62f2
MD5 0e881a7f3c1c8ab976ae63529849ce0e
BLAKE2b-256 f91fc087bb9df114bb82b8b6d39d9d8205d5fc82a8989778cc54412fd93d1c41

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2a0e46502f5b5fd9342764703c0d49b5af9cc01ee268e5306405b9caf79c0864
MD5 58d806db16f4ebee6a57923b2b5b45de
BLAKE2b-256 e8d6be41895eb2f4e7b601969238f19a14b681c51d744b7bf09c34d1b068e3b6

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f000eb7b119715a199e1a884c427f9c2e90f5e453ab6ee7abfddaaf8dcb44bb8
MD5 e5d5fba9911f2e0dbd3ed749a8c0a18e
BLAKE2b-256 19591613bfc87c26662a6a7e93d2cc2de30561e430529e52f4770c6143d3c5d0

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4211b10d20dea50ef2029b61ef16ac13dd2883cdf2ef648dfb747ff473e61a98
MD5 2f10fea3f4c626bcca0e83953f45cc51
BLAKE2b-256 637781f92653950178e74a7d0c79b80d47bb2a0676f77ac3002188c8c6786a97

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 294056aae092f7ffb817714da5268c1aac67db83f054c466705b55c6723a79f2
MD5 d605954d29d06d48dbe298dcdbe75041
BLAKE2b-256 274cd599bb837b70317b43ac6de8e676d13ffb44ca4342d15f314d7d13c0d6cd

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.26.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 361.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c9a39ea61b11375cce674789ba26ea682b1303f87b3634419222730dd4a697f8
MD5 34b8206aecb1bf608d6c98c6968461d2
BLAKE2b-256 e8f42c222ede354addea2dcbfd84977e9dfef1379e1971f858b959c4f88e1d5c

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: iminuit-2.26.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 314.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for iminuit-2.26.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 25c6dfe01bc8de58c33c3a2a85639c2287782c7a8225de7a47b32531196e434f
MD5 b63a4035eb5f4a8ec005607b7dca3556
BLAKE2b-256 0c14fcea1d1954fe654d86cb2a3d9f46f80295f679f66f40ccc6de4e9c43acf8

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ad9fae3bb2b4509cbf894f6fb123fdf27e781c6d40aba55e25eb33d3acbd38cc
MD5 2403dd34ee697de0d5446188a052fbd8
BLAKE2b-256 70ce58bcefbd81965f052b332192b6ff07045faf483d9aa82cc29f048dddd982

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7d7cbcc34a9bd67ed7bf1ad82ba43efc001143d9befdcd7d41fbaf41588abb78
MD5 b5dae8b981d28de12e0dbf51d5cd2805
BLAKE2b-256 9895f248a9ff316cb99e86afa1f084bdcc30280cb464fcbc62128527d84464c6

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3f519a80dfa126ad487a8c5eb288966002d4af96b5761fc661852833ec9c4569
MD5 c5ed4ca2fa445a13e9ff694154bc6de5
BLAKE2b-256 b69d0f56e86ee215e8b1cfa88c39cde26cf1f6d79f1d63e18af4b027ed9d5a90

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 13118a536aa587519be3a8449540fc0a1ae9cb9134a0ea1877aab5f774c168e2
MD5 a8fa89b756c2c1d56a72940d7f88ccd7
BLAKE2b-256 8831e13a0c6a9de8097003f85ec3745bd8a1ce27056cb6fb1041f2ff895920db

See more details on using hashes here.

File details

Details for the file iminuit-2.26.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.26.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd7bf95635351f6a850a891df7ecf27168e07fe784efafd66724a3498373481d
MD5 01c86895a74fc2cd4df8fe32430e83e4
BLAKE2b-256 e90565288c5463c43fbd086edb01e97a19c27e7de4bcf014bf0e32957be33b8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page