Skip to main content

Jupyter-friendly Python frontend for MINUIT2 in C++

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/pypi/v/iminuit.svg https://img.shields.io/conda/vn/conda-forge/iminuit.svg https://coveralls.io/repos/github/scikit-hep/iminuit/badge.svg?branch=develop https://github.com/scikit-hep/iminuit/actions/workflows/docs.yml/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.3949207.svg ascl:2108.024 https://img.shields.io/gitter/room/Scikit-HEP/iminuit https://mybinder.org/badge_logo.svg

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN’s ROOT team.

Minuit was designed to optimize statistical cost functions, for maximum-likelihood and least-squares fits. It provides the best-fit parameters and error estimates from likelihood profile analysis.

The iminuit package brings additional features:

  • Builtin cost functions for statistical fits to N-dimensional data

    • Unbinned and binned maximum-likelihood + extended versions

    • Template fits with error propagation

    • Least-squares (optionally robust to outliers)

    • Gaussian penalty terms for parameters

    • Cost functions can be combined by adding them: total_cost = cost_1 + cost_2

    • Visualization of the fit in Jupyter notebooks

  • Support for SciPy minimizers as alternatives to Minuit’s MIGRAD algorithm (optional)

  • Support for Numba accelerated functions (optional)

Minimal dependencies

iminuit is promised to remain a lean package which only depends on numpy, but additional features are enabled if the following optional packages are installed.

  • numba: Cost functions are partially JIT-compiled if numba is installed.

  • matplotlib: Visualization of fitted model for builtin cost functions

  • ipywidgets: Interactive fitting, see example below (also requires matplotlib)

  • scipy: Compute Minos intervals for arbitrary confidence levels

  • unicodeitplus: Render names of model parameters in simple LaTeX as Unicode

Documentation

Checkout our large and comprehensive list of tutorials that take you all the way from beginner to power user. For help and how-to questions, please use the discussions on GitHub or gitter.

Lecture by Glen Cowan

In the exercises to his lecture for the KMISchool 2022, Glen Cowan shows how to solve statistical problems in Python with iminuit. You can find the lectures and exercises on the Github page, which covers both frequentist and Bayesian methods.

Glen Cowan is a known for his papers and international lectures on statistics in particle physics, as a member of the Particle Data Group, and as author of the popular book Statistical Data Analysis.

In a nutshell

iminuit can be used with a user-provided cost functions in form of a negative log-likelihood function or least-squares function. Standard functions are included in iminuit.cost, so you don’t have to write them yourself. The following example shows how to perform an unbinned maximum likelihood fit.

import numpy as np
from iminuit import Minuit
from iminuit.cost import UnbinnedNLL
from scipy.stats import norm

x = norm.rvs(size=1000, random_state=1)

def pdf(x, mu, sigma):
    return norm.pdf(x, mu, sigma)

# Negative unbinned log-likelihood, you can write your own
cost = UnbinnedNLL(x, pdf)

m = Minuit(cost, mu=0, sigma=1)
m.limits["sigma"] = (0, np.inf)
m.migrad()  # find minimum
m.hesse()   # compute uncertainties
Output of the demo in a Jupyter notebook

Interactive fitting

iminuit optionally supports an interactive fitting mode in Jupyter notebooks.

Animated demo of an interactive fit in a Jupyter notebook

High performance when combined with numba

When iminuit is used with cost functions that are JIT-compiled with numba (JIT-compiled pdfs are provided by numba_stats ), the speed is comparable to RooFit with the fastest backend. numba with auto-parallelization is considerably faster than the parallel computation in RooFit.

doc/_static/roofit_vs_iminuit+numba.svg

More information about this benchmark is given in the Benchmark section of the documentation.

Partner projects

  • numba_stats provides faster implementations of probability density functions than scipy, and a few specific ones used in particle physics that are not in scipy.

  • boost-histogram from Scikit-HEP provides fast generalized histograms that you can use with the builtin cost functions.

  • jacobi provides a robust, fast, and accurate calculation of the Jacobi matrix of any transformation function and building a function for generic error propagation.

Versions

The current 2.x series has introduced breaking interfaces changes with respect to the 1.x series.

All interface changes are documented in the changelog with recommendations how to upgrade. To keep existing scripts running, pin your major iminuit version to <2, i.e. pip install 'iminuit<2' installs the 1.x series.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iminuit-2.27.0.tar.gz (3.3 MB view details)

Uploaded Source

Built Distributions

iminuit-2.27.0-cp312-cp312-win_amd64.whl (361.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

iminuit-2.27.0-cp312-cp312-win32.whl (316.2 kB view details)

Uploaded CPython 3.12 Windows x86

iminuit-2.27.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (427.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

iminuit-2.27.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (394.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

iminuit-2.27.0-cp312-cp312-macosx_11_0_arm64.whl (359.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

iminuit-2.27.0-cp312-cp312-macosx_10_9_x86_64.whl (401.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

iminuit-2.27.0-cp311-cp311-win_amd64.whl (360.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

iminuit-2.27.0-cp311-cp311-win32.whl (315.0 kB view details)

Uploaded CPython 3.11 Windows x86

iminuit-2.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (430.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

iminuit-2.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (397.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

iminuit-2.27.0-cp311-cp311-macosx_11_0_arm64.whl (359.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

iminuit-2.27.0-cp311-cp311-macosx_10_9_x86_64.whl (399.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

iminuit-2.27.0-cp310-cp310-win_amd64.whl (359.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

iminuit-2.27.0-cp310-cp310-win32.whl (314.3 kB view details)

Uploaded CPython 3.10 Windows x86

iminuit-2.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (428.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

iminuit-2.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (396.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

iminuit-2.27.0-cp310-cp310-macosx_11_0_arm64.whl (357.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

iminuit-2.27.0-cp310-cp310-macosx_10_9_x86_64.whl (398.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

iminuit-2.27.0-cp39-cp39-win_amd64.whl (359.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

iminuit-2.27.0-cp39-cp39-win32.whl (314.3 kB view details)

Uploaded CPython 3.9 Windows x86

iminuit-2.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (396.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

iminuit-2.27.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (394.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

iminuit-2.27.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (407.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

iminuit-2.27.0-cp39-cp39-macosx_11_0_arm64.whl (358.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

iminuit-2.27.0-cp39-cp39-macosx_10_9_x86_64.whl (398.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

iminuit-2.27.0-cp38-cp38-win_amd64.whl (359.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

iminuit-2.27.0-cp38-cp38-win32.whl (314.2 kB view details)

Uploaded CPython 3.8 Windows x86

iminuit-2.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (396.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

iminuit-2.27.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (393.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

iminuit-2.27.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (406.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

iminuit-2.27.0-cp38-cp38-macosx_11_0_arm64.whl (357.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

iminuit-2.27.0-cp38-cp38-macosx_10_9_x86_64.whl (398.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file iminuit-2.27.0.tar.gz.

File metadata

  • Download URL: iminuit-2.27.0.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0.tar.gz
Algorithm Hash digest
SHA256 4ce830667730e76d20b10416a5851672c7fcc301dd1f48b9143cfd187b89ab8e
MD5 3419896c403b98f70eb1a14c68721815
BLAKE2b-256 c19a3e907dac31f0b58dfc444d1cec09a3fc72bb5cf3af27207dc2c9c7d3b646

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.27.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 361.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 85f942ab2afaa4e3163af01798b3dd0be96f9a271e8eb5d23abb92b3d68e6d0e
MD5 128920e3957e070410e1eaeba0ef5b11
BLAKE2b-256 64d795a98eb3c39838ca038fec21463f1c98868e7f06610fe5a039b12809f98d

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: iminuit-2.27.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 316.2 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 0393c046194520241ca884ded7f2756844b9ba2f617d9993a8effdb07f5c20ef
MD5 d9b915dbc4492c98f35dafc90949a02d
BLAKE2b-256 60f73292918c018f09e313717b3ca041333476df436847ff63fa5a3e1abc23b1

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7472d98d0ccd5e4331a5b1ac0648fb48011c7570d2672cee44271b40aaa7a87c
MD5 36c8614f6a0e3a28c0943f27ea25a90a
BLAKE2b-256 2c9c1051f36f2725d66b87f4a3e0ce844e6e9452a7d84a4aa1168ed0e57f356d

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 828884244adc137c86dbc42f2f1e9d482667cabb851cd2848a9ac9501532ff3a
MD5 87c30e79d1c2ada4777717b8ee208e33
BLAKE2b-256 d1be1101a54565346714c4c74a599b6b1025b5a582ca975106127268c3d88e11

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e5627120c6d84ef9943a970ce04406004be2595c0c858656a7a9a3ef1ccc2b49
MD5 2c9d5e1371090428799fa8306bc9c0b9
BLAKE2b-256 4d30b5dd1c1aa66457ec81d0af8cb962dc8c654f246a73499b63defe1a3e1af1

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 effa04ba5245bc95af450537febef1c1b2b39296bfc4a8a17b0ac5767b651b87
MD5 224c5232756bac2ef01e38d87c7e57ac
BLAKE2b-256 c6d767b84c9789a5351a31d61d0724b3ef1d92b81cf56c040e96158cd26bd3a7

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.27.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 360.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 06f0831b4ed3dc23984243be28afd1f1858047232d1638e43d71f084946fb4ed
MD5 7e386f07eaa415b188a362d84382b7e0
BLAKE2b-256 8de9339fe4ae3d3ccc1a1ae5fac0bfd1e8ac16ec3a8f6dcecb1e1d1bce5f5eaf

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: iminuit-2.27.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 315.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 155b901dbefaef775360401947658aed789a322c7755d703472df70db97c5ddc
MD5 a01752b6e439264ad806391373b02d7d
BLAKE2b-256 ad9f3337d711df99b98c4cc8a171b0ed4458d97bcec3a8e2fd1d274beb58bc0a

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7799bac58a54642898d7f6d67d72a64e083787502bcb2efe35e5463345f3085
MD5 9b4dc042e56fc7cb0425e0bdd649015e
BLAKE2b-256 ab454028456309fc3ac8f4e61b357391063340a7754a37fc1e8de8bda21eb045

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74734614b67e4a64897663ec062e01b93baec5f6567690d46d9f9badcb63cb5e
MD5 d4545257fa4ba8c7a029ddbe46820549
BLAKE2b-256 90d00c35a86f06ff68fa1fe17c65905e83bdbdf5f3a37b9f8be299bf7cf234c1

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b914f5f0862ef75cb7fe591358649f2624b8048cbb956d5ac17c9cae3c711ffa
MD5 edda3a32836194893710cb18c9bd6722
BLAKE2b-256 cd018ef139d03fd1f74fd4e468cf25465fabfd8d3b6ddfc46917c6a94b3241a7

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a836d10ad57a0607a57c0b89f70ae876dbcf8b431fd5f1f98de23734f2f9380e
MD5 472587efc23d229e99dc4c7f8b13ea6f
BLAKE2b-256 d1a34fe5207baebef7a679adb35a1afed7868bb2f8b82597782d3bb90f45e21a

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.27.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 359.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cbeea85b6e91a45c2b4eb5b04c19d48db08c767c586f739a8b2cf8b13db5e150
MD5 2458147cd80344dd775f40b8ca18af1e
BLAKE2b-256 7de07d2659c6ad0a5b7f06bdedd3efda7d12641e5578703f6136cf8ee1ed50f8

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: iminuit-2.27.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 314.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5a0fdb1f25a9128c5f3b17b2703e88235e8627811c19848feb42569cbbf8aa69
MD5 fdbec2734dd6b62ef09499e80686b621
BLAKE2b-256 3fe8df810e6f7fadb2f3cb75205ccd1b4e7b0125bbd1ea0b0d0c634dcdb683ed

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4ed5e560ecca42e38db2c32725372b15e05fe488d46d483c800d350f1747656
MD5 6a6bed2245a5cf4d074cee45ce1d26d3
BLAKE2b-256 42da8dcb42f2cc804a942d69ab019790c3164083edd506ec288a070638b7750a

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc489a49530f395958ed37e8f1ce4a725e2045e32a6a3bddad2f8482c9e8c94e
MD5 d7b500fb8b032039de9ace49f2991a9b
BLAKE2b-256 c0bf0e76cf6d66e57572f770fa6f7ded2169b7a3249229968771740b175cfd86

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69d6082206e662b5115d4f79e410d0cc1b202502cf58a400c24e567ede64986d
MD5 499c167d974a15bb16f804840616f210
BLAKE2b-256 ca319ea6bc28dc8f8e0ddc61aa4a73c5b936e0becffca321f432dbf2f235745e

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba516c23ef94665d3c0cbde0d284c457123819fa2a2bc68c9380a67cc52a4ceb
MD5 a5e10f302e8c397f91f971617cce91bd
BLAKE2b-256 88914946d53b23669d65b3d8a077eeaba11b5cd10d08724a2c7471d5d760dad8

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.27.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 359.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b19213aba21aafaf1dc47d27bfef2698cd601badaeb7ebf8aaf4117a5e0b1a5b
MD5 0a59b22a0d41e27ba3833ef8f832d135
BLAKE2b-256 4ffe48df68a6268730264eb3cf75b0ad0392e582c05f7a7d1ca378179f639d8b

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: iminuit-2.27.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 314.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 06fd6edda9d16b9d5fbe07bf5740ad37b430ade79e74c6c8719e3809f601f67c
MD5 a3d531b4ff7687c91db08c00465a0ebb
BLAKE2b-256 3f94dea50a23638f91faa8d8d6da36ea97c7ea9d3bcf878ef5e99e6a9be6f38f

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b7d2db901f2737608bdb61109a4f00efa6979e74b4b135fb1c50f21455679286
MD5 807cefe7b957ee625bb23a71acfffd8e
BLAKE2b-256 df00420e633c84f6610d15f89ca039d61baaac03c5b6c1f4311dda52a6059738

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d9381c93ad3480b7c2a4b722a6017ada7bf563125d8b88124402aefa5e29ee63
MD5 6bd265970cd09bc1f10e6a0b71678b62
BLAKE2b-256 a4f4cf0f44a3593ab6c4a6aac083b19ca096ae4233437f9d83e1a9b0c561ee29

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a4a78bc0b50409fd64d6ec445e22d526c8f1ae65c6f526cc6b318ca88dbfa830
MD5 55a1b7727ab97c877e42870e1fd37295
BLAKE2b-256 d510347f360dcd68da85d4225184c541040c34b0b1e372c5a21982c211bf011d

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4f115d314ed7a5cf35ec08c034fcfc6e89609007a555677f7cae00bf62760ee2
MD5 d120827888914134323e8f9b5fce65cb
BLAKE2b-256 d55d66b80bef4551714f99c06dd06f345a2850437ceec7e27aba5c6540e15432

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d6470a25645011a462a8f9a493105e38c465c30e8a375488be41c8dd702de547
MD5 02c77a2f612d528ec6b7ade8cc986aac
BLAKE2b-256 f8a9b52303164056121526eb74d4d5f3f8ad75c3f715a79fccd4519b6bbfb838

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.27.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 359.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4566065f844e60df56df2545ba84485b2437b71cf3e87e05589b61d5d25070f9
MD5 6f140b5f54f0bd2cbd5110df5a84bf3a
BLAKE2b-256 8b8f4fa2236cf1f4e8d796bb6c81fe066b24594f3067503aa5e517f495760f80

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: iminuit-2.27.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 314.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.27.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c7c6a8cee66bdcee30931dc82505f27141476f0ed7bf4882bf73f3e4287dbb48
MD5 03d2a8e907e7316f8054913a3c6f5ded
BLAKE2b-256 61685d510f468db404c3c9421a08d6ef2964d422215acae0ddc4a566efb3ce11

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cdd9499203705bcd048d4c575d1c7d64b9502f085baeda2de8d9fdbc4ce5d6b1
MD5 96dfe0a14ac0f11315afa912e6295a3e
BLAKE2b-256 65a41467c2c4563218892cad26e88bcb574725193b17994aae149ee2db2fea42

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 62341b7753b19af63754fd52f21ca6a8aac281cec128942843629a06a5f76dee
MD5 032b1426e2dccb0b1874ccfb78948930
BLAKE2b-256 948d1016cd85934702e38f9af77189b43a0a20c813ed913864d55f171ffeb28d

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 be13f810c344b79f107400e433f4262c92813020ac7418796b930ad5e0780ec7
MD5 39c1ea5a18327a8ded61c5db184afea7
BLAKE2b-256 ef28f155bcc164b989b926f98232436693e80725fdf6b4433d24fa3be6ec1b53

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 757d9c4b3207bf1b889a5c2f585f65015349d278f847c83ec5c081fba148b1a2
MD5 5d31803499fb00563ddaea2a3c852088
BLAKE2b-256 4798ac99d66254c711f19ea6400eeb814cd0317e9d80b0f210b0a253774b8755

See more details on using hashes here.

File details

Details for the file iminuit-2.27.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.27.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a892c73d35ec9f4019e297dde3bc87d219dfc6df10319a16c792a80e61eefe14
MD5 2625f91f94db712ce9685ddf03179bc1
BLAKE2b-256 7182b3cc0fe1f3c7446a1dfd37a79ca1304fd8a7ecdef0a386584d9b2c3c9de3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page