Skip to main content

Jupyter-friendly Python frontend for MINUIT2 in C++

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/pypi/v/iminuit.svg https://img.shields.io/conda/vn/conda-forge/iminuit.svg https://coveralls.io/repos/github/scikit-hep/iminuit/badge.svg?branch=develop https://github.com/scikit-hep/iminuit/actions/workflows/docs.yml/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.3949207.svg ascl:2108.024 https://img.shields.io/gitter/room/Scikit-HEP/iminuit https://mybinder.org/badge_logo.svg

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN’s ROOT team.

Minuit was designed to optimize statistical cost functions, for maximum-likelihood and least-squares fits. It provides the best-fit parameters and error estimates from likelihood profile analysis.

The iminuit package brings additional features:

  • Builtin cost functions for statistical fits to N-dimensional data

    • Unbinned and binned maximum-likelihood + extended versions

    • Template fits with error propagation

    • Least-squares (optionally robust to outliers)

    • Gaussian penalty terms for parameters

    • Cost functions can be combined by adding them: total_cost = cost_1 + cost_2

    • Visualization of the fit in Jupyter notebooks

  • Support for SciPy minimizers as alternatives to Minuit’s MIGRAD algorithm (optional)

  • Support for Numba accelerated functions (optional)

Minimal dependencies

iminuit is promised to remain a lean package which only depends on numpy, but additional features are enabled if the following optional packages are installed.

  • numba: Cost functions are partially JIT-compiled if numba is installed.

  • matplotlib: Visualization of fitted model for builtin cost functions

  • ipywidgets: Interactive fitting, see example below (also requires matplotlib)

  • scipy: Compute Minos intervals for arbitrary confidence levels

  • unicodeitplus: Render names of model parameters in simple LaTeX as Unicode

Documentation

Checkout our large and comprehensive list of tutorials that take you all the way from beginner to power user. For help and how-to questions, please use the discussions on GitHub or gitter.

Lecture by Glen Cowan

In the exercises to his lecture for the KMISchool 2022, Glen Cowan shows how to solve statistical problems in Python with iminuit. You can find the lectures and exercises on the Github page, which covers both frequentist and Bayesian methods.

Glen Cowan is a known for his papers and international lectures on statistics in particle physics, as a member of the Particle Data Group, and as author of the popular book Statistical Data Analysis.

In a nutshell

iminuit can be used with a user-provided cost functions in form of a negative log-likelihood function or least-squares function. Standard functions are included in iminuit.cost, so you don’t have to write them yourself. The following example shows how to perform an unbinned maximum likelihood fit.

import numpy as np
from iminuit import Minuit
from iminuit.cost import UnbinnedNLL
from scipy.stats import norm

x = norm.rvs(size=1000, random_state=1)

def pdf(x, mu, sigma):
    return norm.pdf(x, mu, sigma)

# Negative unbinned log-likelihood, you can write your own
cost = UnbinnedNLL(x, pdf)

m = Minuit(cost, mu=0, sigma=1)
m.limits["sigma"] = (0, np.inf)
m.migrad()  # find minimum
m.hesse()   # compute uncertainties
Output of the demo in a Jupyter notebook

Interactive fitting

iminuit optionally supports an interactive fitting mode in Jupyter notebooks.

Animated demo of an interactive fit in a Jupyter notebook

High performance when combined with numba

When iminuit is used with cost functions that are JIT-compiled with numba (JIT-compiled pdfs are provided by numba_stats ), the speed is comparable to RooFit with the fastest backend. numba with auto-parallelization is considerably faster than the parallel computation in RooFit.

doc/_static/roofit_vs_iminuit+numba.svg

More information about this benchmark is given in the Benchmark section of the documentation.

Partner projects

  • numba_stats provides faster implementations of probability density functions than scipy, and a few specific ones used in particle physics that are not in scipy.

  • boost-histogram from Scikit-HEP provides fast generalized histograms that you can use with the builtin cost functions.

  • jacobi provides a robust, fast, and accurate calculation of the Jacobi matrix of any transformation function and building a function for generic error propagation.

Versions

The current 2.x series has introduced breaking interfaces changes with respect to the 1.x series.

All interface changes are documented in the changelog with recommendations how to upgrade. To keep existing scripts running, pin your major iminuit version to <2, i.e. pip install 'iminuit<2' installs the 1.x series.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iminuit-2.28.0.tar.gz (3.3 MB view details)

Uploaded Source

Built Distributions

iminuit-2.28.0-cp312-cp312-win_amd64.whl (361.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

iminuit-2.28.0-cp312-cp312-win32.whl (316.6 kB view details)

Uploaded CPython 3.12 Windows x86

iminuit-2.28.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (427.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

iminuit-2.28.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (395.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

iminuit-2.28.0-cp312-cp312-macosx_11_0_arm64.whl (360.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

iminuit-2.28.0-cp312-cp312-macosx_10_9_x86_64.whl (401.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

iminuit-2.28.0-cp311-cp311-win_amd64.whl (361.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

iminuit-2.28.0-cp311-cp311-win32.whl (315.4 kB view details)

Uploaded CPython 3.11 Windows x86

iminuit-2.28.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (430.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

iminuit-2.28.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (398.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

iminuit-2.28.0-cp311-cp311-macosx_11_0_arm64.whl (359.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

iminuit-2.28.0-cp311-cp311-macosx_10_9_x86_64.whl (399.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

iminuit-2.28.0-cp310-cp310-win_amd64.whl (360.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

iminuit-2.28.0-cp310-cp310-win32.whl (314.7 kB view details)

Uploaded CPython 3.10 Windows x86

iminuit-2.28.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (429.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

iminuit-2.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (396.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

iminuit-2.28.0-cp310-cp310-macosx_11_0_arm64.whl (358.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

iminuit-2.28.0-cp310-cp310-macosx_10_9_x86_64.whl (398.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

iminuit-2.28.0-cp39-cp39-win_amd64.whl (360.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

iminuit-2.28.0-cp39-cp39-win32.whl (314.7 kB view details)

Uploaded CPython 3.9 Windows x86

iminuit-2.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (396.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

iminuit-2.28.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (395.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

iminuit-2.28.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (407.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

iminuit-2.28.0-cp39-cp39-macosx_11_0_arm64.whl (358.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

iminuit-2.28.0-cp39-cp39-macosx_10_9_x86_64.whl (398.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file iminuit-2.28.0.tar.gz.

File metadata

  • Download URL: iminuit-2.28.0.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.28.0.tar.gz
Algorithm Hash digest
SHA256 6646ae0b66a4760e02cd73711d460a6cf2375382b78ce8344141751595596aad
MD5 b5157cbc47d83736fcf220efd679a749
BLAKE2b-256 d8c39385361c5f115928c1490422d9d824581141f8f444096a6ed00009add74e

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.28.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 361.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.28.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7d97fc2494ddf1951545dbca61e4ba83cadd125e8be11f88c20a5b7b6c2bd88d
MD5 2cc35876860c1550c6bb3073cb65a3e0
BLAKE2b-256 af73d58cadeb9eadb5fef9693929e327acf775eb6ffdfb351970896193d00f9f

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: iminuit-2.28.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 316.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.28.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 490447b5be00960f449bba98695dd0b214b9dec9c9775cbcba2fff8414f0a048
MD5 d65a4e1943a765df2a9cfcc66e18f3dd
BLAKE2b-256 da33b3a6ee183f55f573b67925521f4d16d4e93a8b384a51b940c7c33b9eaff1

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4dfeaa7efb5053ffac3fcd0d2a63e99b479a92cc6a02c59f2d9bbabab848a992
MD5 c3a182fb64f4d277ee42f6734ac2ff14
BLAKE2b-256 b7484ff7e851dbedbd8915c34994e24a48f9e31c889d9edf10056f4f2a05a960

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 71970ae3fa0888f6a0e9e1de3b195380fe81a30f612ea836d6f859328cc6bf3f
MD5 95f02e1f830b54b318b8c9c71b828a1f
BLAKE2b-256 36fbabbf50a7483397c07593a3dc5ef472d399322345150bd07eea44e9a27ded

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e6c03706efdac468086526ddfd0660aac1e877d175e67a642be710b5b1f1fa66
MD5 446a9475c5d949221219a02240bcf21f
BLAKE2b-256 fdc77a61ac0492e12fa0f3eddae6d1d6c45d6e4db1410db4d3c60b7763c9923d

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 417eb5f04d6a4b16c47559805713a93e7f363708834144a1d8e4428b3eb34158
MD5 e3b967942af38aa0edadd58c0ebd6ae8
BLAKE2b-256 4bfdff6038a2be62d4ce2539b769e94b4dd94488e17374fb18f0fbb1b08b57a0

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.28.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 361.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.28.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 db3efac46f75e80a07ec72089b62ff4b7a8058b877742923fcacb876eb01de23
MD5 3e0478af59f6d2f46130e18d29262db4
BLAKE2b-256 5bc25ccf2e27cff93b81e74ca945f8d3f00264dff909c96f39c2b472bcc4557d

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: iminuit-2.28.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 315.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.28.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b96c515720e0fd0b9d4802faeaa442ff4d1ef3d874bba3a58ea632c3f292d83f
MD5 76d0eee0879472497b18d233f8c974df
BLAKE2b-256 58dedded710cc408efb0629a5ec181ae0fea3ca6cd73739b33d2c104b7679598

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71233eb3f0faf6146a537f4e8d45efe704bf6d0be5d1eb8cb97ffe326a420145
MD5 fce394a1f25581a92aef9c5efb4f6b80
BLAKE2b-256 805b2adf7d6d3e5141aced6a370c1908926b36c8813a79b42594a04af3cd3fc9

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00971b23562c6364470c4c385f1dd526191ee94aa300226f08d2791c26ca6e3d
MD5 00a5c3e0dd4aeabd9207a7b98195448a
BLAKE2b-256 0ef484ef4261fdda2cecc76d6199a8961f523dc03735cd92baccb0840bf2083a

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d99bcd5a36517375c9824ae7a19a293757db2847ed91668327965ff7fdceede1
MD5 312445852872f9f850cdad753e907e0c
BLAKE2b-256 4a2d2a9cb5e189efe456aa5599d49bdaae5e9fa3e4e659b36088afb0e3be1991

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e374e32ad289565c25bf9911339c8209b026c92e18f953c3b9b16157d7ab351
MD5 b655e025585cc168d3ea0b9195bfa4cb
BLAKE2b-256 014452d4fd0eeb7cc2282e9008b08bc83feb5df0c690d4f1ba6919ec1bc25789

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.28.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 360.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.28.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ff68177d7d6f202f6b4808272531a5f970b5a00495a5e4412811caa12ed68cdd
MD5 1d350250ef2ef9e70b474a0e8407c448
BLAKE2b-256 f2aae0ab4870faa1f3ee9a236cfa4cdc6cbf896300d9bf936023f3d59e88f7c9

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: iminuit-2.28.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 314.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.28.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 810e94a7698aa54c1a8fb00cf062e19c41083cb6dece9b975a15432bc849c60c
MD5 6bbb640d66a97783d625dab06038af42
BLAKE2b-256 d72f2983a93b04a10edd6601bae93397e38a67dc3e2b7ce8a629073cd2d5e540

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e810baebd1364d204a9a44c1a45b89e3ae5d007c38de5b2a2e0dbec9fce05223
MD5 cfe91fc0eefafccb78b175dbd5438922
BLAKE2b-256 d097c7873662d5377ff460f39c46ecf1218351ab6758206cde42e82b266d8ab0

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 192c9b6017200269c2ac8256944205f92b29a2c116b6b4c00b4b2b17d82ab707
MD5 dd832a6cc833b6a90681d53ef95b92ee
BLAKE2b-256 9dd0dc20f0a1ca4941c5f9df7dcf7f3b6e9b8e2cdb85db7e4b660321d9b04555

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8dcbe450d4d53e8fafebc604b9b0b3b08923328ea408a828b9713d08df0681df
MD5 e7d37670dc76a5ed8fbe43d5b81f8f88
BLAKE2b-256 ef251006841b1e38f04ee903cd1885c339554c9bd54c03571a46f2be22bf26e7

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2c5c3cb663cb575cfe7007172f697f8cf4d9eeebaa3146decf782ca06d3b363
MD5 47452655cd8451c1f37fdd61030701b4
BLAKE2b-256 d91e7b318262f8062ca661c7442dd9ef95b7a972b73cdc98d624765b4ca148e5

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.28.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 360.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.28.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bb0551759c933e0e8054277e6a4aa948e41dbca642d2da0d6a7ee4c8ec8dcef1
MD5 1692e482c83102acc128c32f509a1b96
BLAKE2b-256 1f2964c05b91efdc32f139571f629706593ac0d41084fbde651de24fe0bad574

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: iminuit-2.28.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 314.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for iminuit-2.28.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 748ad8130b40f74030e5761bb69fb092bcb708012a6d72cad6d13b73558cccf8
MD5 25deaf66a20b6c8adb561043a1c7a5b4
BLAKE2b-256 f08aa604e57df1dc651527579389fd3f425754b2bd74462a04922a82cb33dd6c

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a54765c49e0599dc50f7824ccf8a8766a26437d1280e7c182556fb46ba0bb808
MD5 cc457d29877e1ae5e5b73990d81ed02a
BLAKE2b-256 7162113fda82b592c964d40f18325f182dda25a99691e8b982fc64b4ced17d95

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1e73e15caf6dca4fadf10969a4e07df3c2366b23176b1fb6791eb806549b9f66
MD5 80f634e40a2988ee1bcfa02cd02f867b
BLAKE2b-256 161f7dcb319fd2061b9127f711f52128c11028fdd2daf2f0e19c56ce80f72d19

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a7ed19bcf804e72e4ce1b817e2f5fb4e3b2190325f8dcf7626b1c73d879d004c
MD5 63a7a5f99bffe28c17bd9bd735734e7c
BLAKE2b-256 7e22b4e338af7cbee8698f6358f5c5558356102f497332e37c9f69e9ee605410

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8b129b7272b620f633f39bac61ac6297deb48c02d16bd931ebf42f54c3ed219e
MD5 7a6cf68d5446a2d639ca90d692c52ad4
BLAKE2b-256 63a649c745c34b4eb29872af4ea85a5c3817a07d11e006c4239893d214a6fb9e

See more details on using hashes here.

File details

Details for the file iminuit-2.28.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.28.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bcf5289377e356aed5cd735c4f4e564ac62d65fe460af7bc181c6c4a90208da3
MD5 ffdead487290d840ad0d35d2fda8a0f5
BLAKE2b-256 5df755efdb689d0bd5fb7200924d86d75159e1b56c1017b8f4c95758dcaed667

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page