Skip to main content

Jupyter-friendly Python frontend for MINUIT2 in C++

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/pypi/v/iminuit.svg https://img.shields.io/conda/vn/conda-forge/iminuit.svg https://coveralls.io/repos/github/scikit-hep/iminuit/badge.svg?branch=develop https://github.com/scikit-hep/iminuit/actions/workflows/docs.yml/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.3949207.svg ascl:2108.024 https://img.shields.io/gitter/room/Scikit-HEP/iminuit https://mybinder.org/badge_logo.svg

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN’s ROOT team.

Minuit was designed to optimize statistical cost functions, for maximum-likelihood and least-squares fits. It provides the best-fit parameters and error estimates from likelihood profile analysis.

The iminuit package brings additional features:

  • Builtin cost functions for statistical fits to N-dimensional data

    • Unbinned and binned maximum-likelihood + extended versions

    • Template fits with error propagation

    • Least-squares (optionally robust to outliers)

    • Gaussian penalty terms for parameters

    • Cost functions can be combined by adding them: total_cost = cost_1 + cost_2

    • Visualization of the fit in Jupyter notebooks

  • Support for SciPy minimizers as alternatives to Minuit’s MIGRAD algorithm (optional)

  • Support for Numba accelerated functions (optional)

Minimal dependencies

iminuit is promised to remain a lean package which only depends on numpy, but additional features are enabled if the following optional packages are installed.

  • numba: Cost functions are partially JIT-compiled if numba is installed.

  • matplotlib: Visualization of fitted model for builtin cost functions

  • ipywidgets: Interactive fitting, see example below (also requires matplotlib)

  • scipy: Compute Minos intervals for arbitrary confidence levels

  • unicodeitplus: Render names of model parameters in simple LaTeX as Unicode

Documentation

Checkout our large and comprehensive list of tutorials that take you all the way from beginner to power user. For help and how-to questions, please use the discussions on GitHub or gitter.

Lecture by Glen Cowan

In the exercises to his lecture for the KMISchool 2022, Glen Cowan shows how to solve statistical problems in Python with iminuit. You can find the lectures and exercises on the Github page, which covers both frequentist and Bayesian methods.

Glen Cowan is a known for his papers and international lectures on statistics in particle physics, as a member of the Particle Data Group, and as author of the popular book Statistical Data Analysis.

In a nutshell

iminuit can be used with a user-provided cost functions in form of a negative log-likelihood function or least-squares function. Standard functions are included in iminuit.cost, so you don’t have to write them yourself. The following example shows how to perform an unbinned maximum likelihood fit.

import numpy as np
from iminuit import Minuit
from iminuit.cost import UnbinnedNLL
from scipy.stats import norm

x = norm.rvs(size=1000, random_state=1)

def pdf(x, mu, sigma):
    return norm.pdf(x, mu, sigma)

# Negative unbinned log-likelihood, you can write your own
cost = UnbinnedNLL(x, pdf)

m = Minuit(cost, mu=0, sigma=1)
m.limits["sigma"] = (0, np.inf)
m.migrad()  # find minimum
m.hesse()   # compute uncertainties
Output of the demo in a Jupyter notebook

Interactive fitting

iminuit optionally supports an interactive fitting mode in Jupyter notebooks.

Animated demo of an interactive fit in a Jupyter notebook

High performance when combined with numba

When iminuit is used with cost functions that are JIT-compiled with numba (JIT-compiled pdfs are provided by numba_stats ), the speed is comparable to RooFit with the fastest backend. numba with auto-parallelization is considerably faster than the parallel computation in RooFit.

doc/_static/roofit_vs_iminuit+numba.svg

More information about this benchmark is given in the Benchmark section of the documentation.

Citation

If you use iminuit in a scientific work, please cite us. A generic BibTeX entry is:

@article{iminuit,
  author={Hans Dembinski and Piti Ongmongkolkul et al.},
  title={scikit-hep/iminuit},
  DOI={10.5281/zenodo.3949207},
  publisher={Zenodo},
  year={2020},
  month={Dec},
  url={https://doi.org/10.5281/zenodo.3949207}
}

The DOI and URL in this entry point always to the latest release of iminuit. You can also cite the actual release that you used, please follow the Zenodo link, which offers entries for common bibliography formats for all iminuit releases.

The recommended scientific reference for the MINUIT algorithms is:

@article{James:1975dr,
    author = "James, F. and Roos, M.",
    title = "{Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations}",
    reportNumber = "CERN-DD-75-20",
    doi = "10.1016/0010-4655(75)90039-9",
    journal = "Comput. Phys. Commun.",
    volume = "10",
    pages = "343--367",
    year = "1975"
}

Partner projects

  • numba_stats provides faster implementations of probability density functions than scipy, and a few specific ones used in particle physics that are not in scipy.

  • boost-histogram from Scikit-HEP provides fast generalized histograms that you can use with the builtin cost functions.

  • jacobi provides a robust, fast, and accurate calculation of the Jacobi matrix of any transformation function and building a function for generic error propagation.

Versions

The 2.x series has introduced breaking interfaces changes with respect to the 1.x series. There are no plans to introduce further breaking changes.

All interface changes from 1.x to 2.x are documented in the changelog with recommendations how to upgrade. To keep old scripts running, pin your major iminuit version to <2: the command pip install 'iminuit<2' installs the 1.x series.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iminuit-2.29.0.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

iminuit-2.29.0-cp312-cp312-win_amd64.whl (364.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

iminuit-2.29.0-cp312-cp312-win32.whl (319.1 kB view details)

Uploaded CPython 3.12 Windows x86

iminuit-2.29.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (429.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

iminuit-2.29.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (397.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

iminuit-2.29.0-cp312-cp312-macosx_11_0_arm64.whl (362.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

iminuit-2.29.0-cp312-cp312-macosx_10_9_x86_64.whl (404.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

iminuit-2.29.0-cp311-cp311-win_amd64.whl (363.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

iminuit-2.29.0-cp311-cp311-win32.whl (317.6 kB view details)

Uploaded CPython 3.11 Windows x86

iminuit-2.29.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (432.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

iminuit-2.29.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (400.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

iminuit-2.29.0-cp311-cp311-macosx_11_0_arm64.whl (362.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

iminuit-2.29.0-cp311-cp311-macosx_10_9_x86_64.whl (402.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

iminuit-2.29.0-cp310-cp310-win_amd64.whl (362.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

iminuit-2.29.0-cp310-cp310-win32.whl (317.1 kB view details)

Uploaded CPython 3.10 Windows x86

iminuit-2.29.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (431.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

iminuit-2.29.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (399.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

iminuit-2.29.0-cp310-cp310-macosx_11_0_arm64.whl (360.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

iminuit-2.29.0-cp310-cp310-macosx_10_9_x86_64.whl (400.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

iminuit-2.29.0-cp39-cp39-win_amd64.whl (362.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

iminuit-2.29.0-cp39-cp39-win32.whl (317.2 kB view details)

Uploaded CPython 3.9 Windows x86

iminuit-2.29.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (399.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

iminuit-2.29.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (397.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

iminuit-2.29.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (410.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

iminuit-2.29.0-cp39-cp39-macosx_11_0_arm64.whl (360.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

iminuit-2.29.0-cp39-cp39-macosx_10_9_x86_64.whl (401.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file iminuit-2.29.0.tar.gz.

File metadata

  • Download URL: iminuit-2.29.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for iminuit-2.29.0.tar.gz
Algorithm Hash digest
SHA256 bb044854dfe7d6353ef532128037471f78d744f08eb4d26766478ebb1bc1ea74
MD5 109bccbada436ce870b0e43913e4d694
BLAKE2b-256 8caaba98147fcc1dd5115c6b99083cbc0c2de41c817d5ad50b134f78473b0a1b

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.29.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 364.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for iminuit-2.29.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 62ce4a0ef562bd80f396c2f7c2be74272827dbb784a56e2428c37e59fdbac65c
MD5 bf27310ec70dcfdfdf6955b62ff7a848
BLAKE2b-256 3de520d178276afe811927c5ba0378b69ac524a9108606a7461580e2d0e3edf4

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: iminuit-2.29.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 319.1 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for iminuit-2.29.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 dea1bc0c9730ba5ae44596d109cb372ee316947a6197c2b4e82eeac2fd7d7cc5
MD5 6b80ba2f8173f374459de5d3c2c25a7b
BLAKE2b-256 28e349e8ed3f3b1a3d500ffd80fcc6e4d2c9ac9be40ee817b5333be2b714aa3b

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53428857afdbb2180ae78533f8029154bdef470e644d7b9655191cb6927ea317
MD5 06200510c4351f586cb3441cc89c135a
BLAKE2b-256 4d7a5c74ebca6e4478403edb29b5459d5b7adae728f2ca6bf2abc6295c6a925e

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1708a54319104a3367a1dcfa9639b377b95c232682e5295c63d7ad6ab772bc00
MD5 c6b5dbfa81e6fe9da10e7e01bfcf856d
BLAKE2b-256 1b31e01d0814cf808c2032f3a606fa0bec997ce67352303659b20949dbe2b4e3

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 19d5e14faaf53cf5a026394c879c60c9c9346b48646190e3d93b1f816d35973b
MD5 68fd798e6fe1d6797b7ed0df85b814cd
BLAKE2b-256 eb1004ec1ca9fb700fe32be9525945bf618d69d3bf6660635df81f9cab6bc879

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c71decb1223e455b0e6377b6764b9c860be83d2229a924989df8afed3505e4b0
MD5 8e1f023471387fda7d435acd67fd7df1
BLAKE2b-256 ac1b93d4054d6131598c824a940a55373f03ba0ba42a43db17459fb1e55a795b

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.29.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 363.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for iminuit-2.29.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e3bc458a92fe9d756aec41d1b683063e786a347f576e1f4fbc1d39c349e89bef
MD5 9e33695e4cc90f2c35bd1402667b7305
BLAKE2b-256 b8410c45ca405bb092421f60c0486cc910dde2f4959ce25b0707cca36f610f7e

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: iminuit-2.29.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 317.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for iminuit-2.29.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5b848d7100309d7a75aeedc242655d6510d776e7ebc0e3f142b157ee99c2cca7
MD5 3cfb08eb97425d2ebcdd71bb74cdf256
BLAKE2b-256 85424cf8fff0293b753375b207bb5bf401e75392a0950ae9ec17cb0c87773633

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8293b0a9429a91c92af31836946cb8a4cada4a4d0a08dfc3139dc74dab1e01d9
MD5 7f638ea4e06ae24515781bdca2d5238c
BLAKE2b-256 b01154a19a9155717378f97dede2b006ad84712e85b714c586f8f405bc2392e8

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ea0e067f9f4eb21fcccc633bc0f0e4e4d0f0f565b08a130083868dc7664be21d
MD5 c362805b1541aa0980c8357ea0906dce
BLAKE2b-256 eb89354f526ff9272a56cadec6724f2b5532051595119686b965808e9aa7e98e

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c62182136b2a36951f95c489891b9b29c128262f00dbb3dca8462fb815ed798
MD5 aa5136ff5e7bffc353797003fe337ca6
BLAKE2b-256 55c219ec9a4d3482ef1327acfab79fff70d7ece96cfe927f6f2ae15ece1dca25

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5b811e6339b0a11d6089c3e6d58b7cf6c9b9db81ae8e4c00fbced9ad12551a0
MD5 5839cbfd95addba7aa6211a4c06474f9
BLAKE2b-256 643433022578dcbb1493a90921e241be79b0e75a61d3ab07feffacc3b00c9281

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.29.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 362.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for iminuit-2.29.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 91adb984b4f4fae3aa58365323780df879892f797f10acc804f29fadfcb8001a
MD5 0ae69401b04b64ea0458bed469d1bc4e
BLAKE2b-256 a638618e8f1e4ebb0459d7de2c3a1d95c629dfe20ac4e0ee74b6fd9a9bd3e50d

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: iminuit-2.29.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 317.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for iminuit-2.29.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f0e2b97d66cb4674b95109755e545d4e5eef26ff233cfa15e0c2ad1fffd4d95c
MD5 db128c067a284b46a609d7cb5bbccfc1
BLAKE2b-256 a62fe216b4f1a101fe2205e9fca7c945bd204cecac4625b252ff614da738e9c8

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e13933108756f61c39be513344ac138cd33731cb0898a4fb57f5d74ff6a52c5
MD5 c48f654fe314da4a224987362d39ae28
BLAKE2b-256 7742895479672cdcac9567d56bae1080a40e492bb302b4db7d2a1f627dbc269b

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6c7e8ca866e86406bbdf203cfdde3c521b655e4422ae56cbad274cb57ca74294
MD5 15838f2ba33c9695577c1b8c1ec71d5d
BLAKE2b-256 bca6f9be667d86b7a09ce0b5418e9dd6344c1da4166af598dca29c12c2059e8f

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a08781e63d23e29edb2bf7233cbd8657731d26a04030059178b777fb8dcb37c5
MD5 9d38bca108b36cf3943bb05a2cab5587
BLAKE2b-256 76b6e54495a4d4a26f02d9610c05ef58b669a0fd6b9a64a4a71b88abdaace1bb

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 142a212873f668f46a50f305855fd4b99062389bdfc12e8bbf97a3460222863c
MD5 37a60e331b6d98db89533638a93d1edb
BLAKE2b-256 8680eacd39f12ace49bf2f111d13b7405704b8b008c473736d253b0604fec60b

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.29.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 362.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for iminuit-2.29.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7a33a2726627c17974c96045984bb60d595a2c4bfc9eb8c45a7739f7bf9e5ef5
MD5 eca463daca99f31de77524fd2d3c8bb0
BLAKE2b-256 b4145ad5b83507dbcaa1bd1eaffb0b4a8d8b95c16fa3243d0b11504780b9cd14

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: iminuit-2.29.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 317.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for iminuit-2.29.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 bae43ed6af5532a92d394618a92a76a1c877abdf1004f0847072174618680e0a
MD5 72bef82f93a17d0086209c31755b943c
BLAKE2b-256 af1ac9d6b6515daef6e4f16647fd2aac68e086f8a264f98e640a4b6e520bb1d6

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9aefd862020d8fa0761c225bcf1271befd99c1e71279669120ccc734da9a7399
MD5 030d71a6de5abff4cf94f3c6ee940dad
BLAKE2b-256 dfd3890ba7ca2efca8dd6d4d4aba9d19d373763d5f4b21d1cb00642346876e1d

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d46d59821100b63779e7b6f867921d0e63505460fc4b630ad87730b4f4a60dd5
MD5 dcddc864732d87644a5efdeb79143f96
BLAKE2b-256 b2b659c4d4348ee3ddca221034776e618fb6c954190488961fb3bb93329f3337

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b86dbe8a5c603afccd56b7210546e0684ee4dd86745e38155bf0bde361de4080
MD5 607563ad1d333adc2398c0de208fef96
BLAKE2b-256 9ae79a15fdf21b54ec2178de3c91929d77122b65f90659791e38c689823e1f55

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 78c66c8087f1857242b3e811b265d8306e9f7c3282d2e9e139d755973966116e
MD5 79d29fdef6ce2e8e281e737cc13efec4
BLAKE2b-256 1f4110a1cadf4a3a6298d0c186581677db85a7d788903d5c297557b4fba35a0d

See more details on using hashes here.

File details

Details for the file iminuit-2.29.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.29.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffbf3005d0710d4ea7caa8a48f8c07b01ebcf98f38eebda94d3f320415476126
MD5 bb4f41da72f6d8541e61fe06c6873ddc
BLAKE2b-256 a25ea4b12d23aac4202b42ac7d198668b2b6339bea43bd092a47ebc7b7f11af6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page