Skip to main content

Jupyter-friendly Python frontend for MINUIT2 in C++

Project description

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://img.shields.io/pypi/v/iminuit.svg https://img.shields.io/conda/vn/conda-forge/iminuit.svg https://coveralls.io/repos/github/scikit-hep/iminuit/badge.svg?branch=develop https://github.com/scikit-hep/iminuit/actions/workflows/docs.yml/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.3949207.svg ascl:2108.024 https://img.shields.io/gitter/room/Scikit-HEP/iminuit https://mybinder.org/badge_logo.svg

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN’s ROOT team.

Minuit was designed to optimize statistical cost functions, for maximum-likelihood and least-squares fits. It provides the best-fit parameters and error estimates from likelihood profile analysis.

The iminuit package brings additional features:

  • Builtin cost functions for statistical fits to N-dimensional data

    • Unbinned and binned maximum-likelihood + extended versions

    • Template fits with error propagation

    • Least-squares (optionally robust to outliers)

    • Gaussian penalty terms for parameters

    • Cost functions can be combined by adding them: total_cost = cost_1 + cost_2

    • Visualization of the fit in Jupyter notebooks

  • Support for SciPy minimizers as alternatives to Minuit’s MIGRAD algorithm (optional)

  • Support for Numba accelerated functions (optional)

Minimal dependencies

iminuit is promised to remain a lean package which only depends on numpy, but additional features are enabled if the following optional packages are installed.

  • numba: Cost functions are partially JIT-compiled if numba is installed.

  • matplotlib: Visualization of fitted model for builtin cost functions

  • ipywidgets: Interactive fitting, see example below (also requires matplotlib)

  • scipy: Compute Minos intervals for arbitrary confidence levels

  • unicodeitplus: Render names of model parameters in simple LaTeX as Unicode

Documentation

Checkout our large and comprehensive list of tutorials that take you all the way from beginner to power user. For help and how-to questions, please use the discussions on GitHub or gitter.

Lecture by Glen Cowan

In the exercises to his lecture for the KMISchool 2022, Glen Cowan shows how to solve statistical problems in Python with iminuit. You can find the lectures and exercises on the Github page, which covers both frequentist and Bayesian methods.

Glen Cowan is a known for his papers and international lectures on statistics in particle physics, as a member of the Particle Data Group, and as author of the popular book Statistical Data Analysis.

In a nutshell

iminuit can be used with a user-provided cost functions in form of a negative log-likelihood function or least-squares function. Standard functions are included in iminuit.cost, so you don’t have to write them yourself. The following example shows how to perform an unbinned maximum likelihood fit.

import numpy as np
from iminuit import Minuit
from iminuit.cost import UnbinnedNLL
from scipy.stats import norm

x = norm.rvs(size=1000, random_state=1)

def pdf(x, mu, sigma):
    return norm.pdf(x, mu, sigma)

# Negative unbinned log-likelihood, you can write your own
cost = UnbinnedNLL(x, pdf)

m = Minuit(cost, mu=0, sigma=1)
m.limits["sigma"] = (0, np.inf)
m.migrad()  # find minimum
m.hesse()   # compute uncertainties
Output of the demo in a Jupyter notebook

Interactive fitting

iminuit optionally supports an interactive fitting mode in Jupyter notebooks.

Animated demo of an interactive fit in a Jupyter notebook

High performance when combined with numba

When iminuit is used with cost functions that are JIT-compiled with numba (JIT-compiled pdfs are provided by numba_stats ), the speed is comparable to RooFit with the fastest backend. numba with auto-parallelization is considerably faster than the parallel computation in RooFit.

doc/_static/roofit_vs_iminuit+numba.svg

More information about this benchmark is given in the Benchmark section of the documentation.

Citation

If you use iminuit in a scientific work, please cite us. A generic BibTeX entry is:

@article{iminuit,
  author={Hans Dembinski and Piti Ongmongkolkul et al.},
  title={scikit-hep/iminuit},
  DOI={10.5281/zenodo.3949207},
  publisher={Zenodo},
  year={2020},
  month={Dec},
  url={https://doi.org/10.5281/zenodo.3949207}
}

The DOI and URL in this entry point always to the latest release of iminuit. You can also cite the actual release that you used, please follow the Zenodo link, which offers entries for common bibliography formats for all iminuit releases.

The recommended scientific reference for the MINUIT algorithms is:

@article{James:1975dr,
    author = "James, F. and Roos, M.",
    title = "{Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations}",
    reportNumber = "CERN-DD-75-20",
    doi = "10.1016/0010-4655(75)90039-9",
    journal = "Comput. Phys. Commun.",
    volume = "10",
    pages = "343--367",
    year = "1975"
}

Partner projects

  • numba_stats provides faster implementations of probability density functions than scipy, and a few specific ones used in particle physics that are not in scipy.

  • boost-histogram from Scikit-HEP provides fast generalized histograms that you can use with the builtin cost functions.

  • jacobi provides a robust, fast, and accurate calculation of the Jacobi matrix of any transformation function and building a function for generic error propagation.

Versions

The 2.x series has introduced breaking interfaces changes with respect to the 1.x series. There are no plans to introduce further breaking changes.

All interface changes from 1.x to 2.x are documented in the changelog with recommendations how to upgrade. To keep old scripts running, pin your major iminuit version to <2: the command pip install 'iminuit<2' installs the 1.x series.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iminuit-2.30.0.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

iminuit-2.30.0-cp312-cp312-win_amd64.whl (369.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

iminuit-2.30.0-cp312-cp312-win32.whl (322.6 kB view details)

Uploaded CPython 3.12 Windows x86

iminuit-2.30.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (436.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

iminuit-2.30.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (402.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

iminuit-2.30.0-cp312-cp312-macosx_11_0_arm64.whl (369.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

iminuit-2.30.0-cp312-cp312-macosx_10_9_x86_64.whl (411.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

iminuit-2.30.0-cp311-cp311-win_amd64.whl (368.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

iminuit-2.30.0-cp311-cp311-win32.whl (322.1 kB view details)

Uploaded CPython 3.11 Windows x86

iminuit-2.30.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (440.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

iminuit-2.30.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (407.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

iminuit-2.30.0-cp311-cp311-macosx_11_0_arm64.whl (368.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

iminuit-2.30.0-cp311-cp311-macosx_10_9_x86_64.whl (409.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

iminuit-2.30.0-cp310-cp310-win_amd64.whl (367.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

iminuit-2.30.0-cp310-cp310-win32.whl (321.3 kB view details)

Uploaded CPython 3.10 Windows x86

iminuit-2.30.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (439.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

iminuit-2.30.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (405.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

iminuit-2.30.0-cp310-cp310-macosx_11_0_arm64.whl (367.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

iminuit-2.30.0-cp310-cp310-macosx_10_9_x86_64.whl (408.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

iminuit-2.30.0-cp39-cp39-win_amd64.whl (367.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

iminuit-2.30.0-cp39-cp39-win32.whl (321.6 kB view details)

Uploaded CPython 3.9 Windows x86

iminuit-2.30.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (405.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

iminuit-2.30.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (402.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

iminuit-2.30.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (414.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

iminuit-2.30.0-cp39-cp39-macosx_11_0_arm64.whl (367.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

iminuit-2.30.0-cp39-cp39-macosx_10_9_x86_64.whl (408.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file iminuit-2.30.0.tar.gz.

File metadata

  • Download URL: iminuit-2.30.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for iminuit-2.30.0.tar.gz
Algorithm Hash digest
SHA256 8de0b82bb6b3381165b38e95761a0270189a0083cdb92e154df1657ec6519a40
MD5 bfb24ee986f133f9ea91f908fcb4ad13
BLAKE2b-256 8bf354358d1102f52d129b5292723466b29f33ff774e43561b233971ed42b61c

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.30.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 369.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for iminuit-2.30.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 db2f0bbc52b4fd8bf201e8212d6e43a9da16a0855ac8277dad5fd0137b1a2ad3
MD5 6508db6f8855793af63deeb56e286655
BLAKE2b-256 fe12c131d130a88ef0aeaac2ee7d220abe169d3fd3c01ad526a6b9f42b592b4e

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: iminuit-2.30.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 322.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for iminuit-2.30.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 181e4e64e0f95c0bac2231570631b350df3c6600cc11db1c20e94ea2b076e7c6
MD5 0afd1fcec78377b189448daaaef53581
BLAKE2b-256 185b69e793568c976fcee2b43ab93bc6d9e62685ed11d45cac81bb8647dee1bc

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 594d35fbb1c512941abe754cf4d08a786a14dae0f54cfb0cc1edda15c6e9eab8
MD5 a278df359ec61ab4824707bcf3208fbc
BLAKE2b-256 52a0ef38e0c3000afc2ed93d3fb02d286cf5764990a8707234fc4de616907708

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5180b7652e5028a2b2b49f2a59443c31b2ac8f710e85576b79f470c2f2fdc0b
MD5 ffaf65e6bdccf8f299254b6fd31c5cff
BLAKE2b-256 ed107c2fb21c97061e5e450511e49f04a982918e56052dbdd7480f7f0d8d4255

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4cea638a173cd41f2e6004071046e332436ed2246fdd86533ca324e96aa64a70
MD5 b080348a4ba423fa68140ae0327798e5
BLAKE2b-256 82f2175fb4f22a75cd43fe2075efb6db57e968735ef963e17483ca7f67af78c6

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 063860a9a8f01873f5562685a3d0b1668f894dcc25b085af7bbda3f6e62254f3
MD5 2fc2eee4d878364369aeaedb7904bd12
BLAKE2b-256 ec78a3574ad6836798b3556a78cb17952c0006a5e5896356bec349e2968d7be6

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.30.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 368.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for iminuit-2.30.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c47e05f7cd56ed1098a29b0538e4767ace8cb82ebef7e3c2ff17a46cf3af1818
MD5 913c58184c704505a0b5a67dcbd023cf
BLAKE2b-256 bf8852a680fea7eb368354ab9383bd5b9b6ecd21e94edeed546b4669f9df60c8

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: iminuit-2.30.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 322.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for iminuit-2.30.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 dcd20c56ef0eec5be6a0e19f3ace1c5de2b82b2ada884fa19716a6eb61bc8e1f
MD5 bce7e30b14f67a67a50446cbf23d085a
BLAKE2b-256 46f0f1c6e55a7da818048c9f6ab3492517c33cd914fa58fced92993e86cac73d

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c694194d1c530009d1c1367e51e3bb5259ff2812d3da3a6a6806f77d3469c71
MD5 19c815416bfcfa6137d8d6b129d309ed
BLAKE2b-256 6188afed3c4f7ecb9c32c55421172ce8ab1b51fef9ec88bdce20abd3f1dcfd50

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 daf2fcffdace8b452d96cd7e43b2383cc6d54416d6f429d166708e070f9ff124
MD5 30760235184cf13bd436f304e1db576c
BLAKE2b-256 564071b122972d2858489c68e60944e52f88ec697a6a5613ff6bb7a2634f85b9

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 143062326ffc09de4ce607461740b19e76a5edd4a22efd1f25406f94263a1477
MD5 1270df4b777e27cc4baa4ed24d99529c
BLAKE2b-256 00e519907f70910a84b6780ec53f0473de9b3709eb944d0669334e91dadda52b

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e0b78542c2c53ddcd4f6bdadf04ea060e804ee393a4b2a939ded86bbff98dbe
MD5 fd37cd60e80b63329c0fedae0da043c4
BLAKE2b-256 4fa374ac8f593b4b5180b0d234963aa50d286ca77360aa3b78b527b384436142

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.30.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 367.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for iminuit-2.30.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5635c671bf692da5fd61229cf31b1e4614c6c78f736b8938e8dd6a5a9d96abfb
MD5 92c76bed1e29ff150083f70679c2e568
BLAKE2b-256 c03b566ea0bce6bcaaa4698b66682ea0f6a47fe9a9cb16eee2f931c34ee37985

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: iminuit-2.30.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 321.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for iminuit-2.30.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 92c7d9e4d622fb45c70c486f27a607db10397644f9cb12755b740a21ace8de0a
MD5 f65cf26a43ed9038b74415586abc2cfc
BLAKE2b-256 5ac5aa33e6b9cc72379718845f60336a772a4df55fa1c409ff839a023c9c3912

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66dfc068b720889bb2a1a7547096afdee3cc11fff32fc93446b507cb19dbe54c
MD5 4e7df10efd3ca0ba611c36ed637710ca
BLAKE2b-256 ae58aa99d3e4c9c8f691608ada1fa7db0d98e106d90173294254a27e9235c789

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e3d37395f084443d802d223c640cf3284fb8665bc9a677647bc3cdd3a4544021
MD5 4874e28b709d16cc83d540ac091b444c
BLAKE2b-256 66a115ba7c1b18f72458cbadae0067f19084fe424fc14771beaae491bb30380a

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f332069060f8de9ef174b6007ad5cf3f1f07ef189d04f50491671a7222000c6f
MD5 400511e320f86fd9df97d4e2a338c2cc
BLAKE2b-256 30a46c165d9d38ac5d098e27340c328d7918a9eae66b96328ca0e7ab101bb821

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f65dadd13cb6c2ec9e728b3274cec1ea6163760fb7c499775c4005628fe66e5c
MD5 ff625e3ef682cbf159d3e58a30c5b576
BLAKE2b-256 e7c4896bd4267bcb62c807be9c2f801cf80e831fc4fd838e195a519b557d6907

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: iminuit-2.30.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 367.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for iminuit-2.30.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 40f698360259966c158d4c8d2090f4c27b9bf1244efc286e7b140208d965bf6d
MD5 1e2fb8e57a6e691fb15eb82ccad79117
BLAKE2b-256 6a717bb0db67117867ac5d139d328bb6e627561dfa0f25db0a004e5f18448eda

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: iminuit-2.30.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 321.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for iminuit-2.30.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fe48609cad6a7489c1ee1f107b0cbacfb84e411009653b6951b2d448a9cf3861
MD5 6c00f9accca3296efa30d8de45dd155f
BLAKE2b-256 cf972e579c7f608d9a6dfb474a9dd375a0bf36f12dfef018fb2ae9dfaa7410e3

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 506b63c9cf807969abddc2a1ce801935e1894a1eba410010486935afc82ba013
MD5 338d049c5d81261897dbb141e7da06a0
BLAKE2b-256 1061e18e86a9c50be40080e95bd95dee1273312ae83a289128a66c9a684a5474

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b8705cb815322897754bd39566828dbdf72eb670411ed4ef1696447240384feb
MD5 47936fa8a8f9f4489d883afe9cf352ed
BLAKE2b-256 35fcd600bc7627a7caa6a181aa8b6ac49de2bb59ef23098e0c216e75c2f047a3

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 25c98865ae357cfb828a9444ea9c9c692b63bf4ccf3e4b3ef66f70d3996dfe81
MD5 4b98c0732db9a77f98744e4d2904aa35
BLAKE2b-256 0806ee45afe10028f4912828f8d0f2778a467ef7cb3cba6cc13c6ea052fd9602

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9bcfddc2d029cc492ac6e2207191186f16300d98a17d58aac2510047966db38
MD5 4f8a8195f82ef5406d799498b8e3581d
BLAKE2b-256 765238d6144dc1757303db14d0bf3b78108d9968ea0fa11adae56df343ac460c

See more details on using hashes here.

File details

Details for the file iminuit-2.30.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for iminuit-2.30.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73f8e93d1a76fdad4a22da794eed1f87947197d1dc036abdd83e5511b5af7fd7
MD5 4b3b5b6f82a2080a37215c11fafc9165
BLAKE2b-256 48447bf35569cbe145aafae3c5a65c796ac6ec4b7a370daea1b114d09f83d1f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page