Skip to main content

An insanely fast whisper CLI

Project description

Insanely Fast Whisper

Powered by 🤗 Transformers, Optimum & flash-attn

TL;DR - Transcribe 300 minutes (5 hours) of audio in less than 98 seconds - with OpenAI's Whisper Large v3. Blazingly fast transcription is now a reality!⚡️

Not convinced? Here are some benchmarks we ran on a free Google Colab T4 GPU! 👇

Optimisation type Time to Transcribe (150 mins of Audio)
Transformers (fp32) ~31 (31 min 1 sec)
Transformers (fp16 + batching [24] + bettertransformer) ~5 (5 min 2 sec)
Transformers (fp16 + batching [24] + Flash Attention 2) ~2 (1 min 38 sec)
distil-whisper (fp16 + batching [24] + bettertransformer) ~3 (3 min 16 sec)
distil-whisper (fp16 + batching [24] + Flash Attention 2) ~1 (1 min 18 sec)
Faster Whisper (fp16 + beam_size [1]) ~9.23 (9 min 23 sec)
Faster Whisper (8-bit + beam_size [1]) ~8 (8 min 15 sec)

🆕 Blazingly fast transcriptions via your terminal! ⚡️

We've added a CLI to enable fast transcriptions. Here's how you can use it:

Install insanely-fast-whisper with pipx:

pipx install insanely-fast-whisper

Run inference from any path on your computer:

insanely-fast-whisper --file-name <filename or URL>

🔥 You can run Whisper-large-v3 w/ Flash Attention 2 from this CLI too:

insanely-fast-whisper --file-name <filename or URL> --flash True 

🌟 You can run distil-whisper directly from this CLI too:

insanely-fast-whisper --model-name distil-whisper/large-v2 --file-name <filename or URL> 

Don't want to install insanely-fast-whisper? Just use pipx run:

pipx run insanely-fast-whisper --file-name <filename or URL>

Note: The CLI is opinionated and currently only works for Nvidia GPUs. Make sure to check out the defaults and the list of options you can play around with to maximise your transcription throughput. Run insanely-fast-whisper --help or pipx run insanely-fast-whisper --help to get all the CLI arguments and defaults.

How to use it without a CLI?

For older GPUs, all you need to run is:

import torch
from transformers import pipeline

pipe = pipeline("automatic-speech-recognition",
                "openai/whisper-large-v2",
                torch_dtype=torch.float16,
                device="cuda:0")

pipe.model = pipe.model.to_bettertransformer()

outputs = pipe("<FILE_NAME>",
               chunk_length_s=30,
               batch_size=24,
               return_timestamps=True)

outputs["text"]

For newer (A10, A100, H100s), use Flash Attention:

import torch
from transformers import pipeline

pipe = pipeline("automatic-speech-recognition",
                "openai/whisper-large-v2",
                torch_dtype=torch.float16,
                model_kwargs={"use_flash_attention_2": True},
                device="cuda:0")

outputs = pipe("<FILE_NAME>",
               chunk_length_s=30,
               batch_size=24,
               return_timestamps=True)

outputs["text"]                

Roadmap

  • Add a light CLI script
  • Deployment script with Inference API

Community showcase

@ochen1 created a brilliant MVP for a CLI here: https://github.com/ochen1/insanely-fast-whisper-cli (Try it out now!)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

insanely_fast_whisper-0.0.5b3.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

insanely_fast_whisper-0.0.5b3-py3-none-any.whl (8.3 kB view details)

Uploaded Python 3

File details

Details for the file insanely_fast_whisper-0.0.5b3.tar.gz.

File metadata

File hashes

Hashes for insanely_fast_whisper-0.0.5b3.tar.gz
Algorithm Hash digest
SHA256 9d378dda60f0b350fc4118e5d646afde2f6577a3ff78c0fa8ddbb862ed5f604a
MD5 715613a4e478a2ab4e2c7525541d7049
BLAKE2b-256 b7541c3135e1a823f4d488acf55eb0c657a3847a890ce872e8488b1a564528d5

See more details on using hashes here.

File details

Details for the file insanely_fast_whisper-0.0.5b3-py3-none-any.whl.

File metadata

File hashes

Hashes for insanely_fast_whisper-0.0.5b3-py3-none-any.whl
Algorithm Hash digest
SHA256 4a95cb75853e38276a6fdd707778ea338f04a063bd9a021a3ab7832e53006134
MD5 c495668c4496f65025dc85fbc51a27db
BLAKE2b-256 e6c0e33b4e44db55cd525124a4e715744059440e34bfe66380df50c65fef5151

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page