Skip to main content

Training Library

Project description

InstructLab Training Library

Lint Build Release License

In order to simplify the process of fine-tuning models through the LAB method, this library provides a simple training interface.

Installation

To get started with the library, you must clone this repo and install it from source via pip:

# clone the repo and switch to the directory
git clone https://github.com/instructlab/training
cd training

# install the library
pip install .

For development, install it instead with pip install -e . instead to make local changes while using this library elsewhere.

Installing Additional NVIDIA packages

We make use of flash-attn and other packages which rely on NVIDIA-specific CUDA tooling to be installed.

If you are using NVIDIA hardware with CUDA, please install the additional dependencies via:

# for a regular install
pip install .[cuda]

# or, for an editable install (development)
pip install -e .[cuda]

Usage

Using the library is fairly straightforward, import the necessary items,

from instructlab.training import (
    run_training,
    TorchrunArgs,
    TrainingArgs,
    DeepSpeedOptions
)

Then, define the training arguments which will serve as the parameters for our training run:

# define training-specific arguments
training_args = TrainingArgs(
    # define data-specific arguments
    model_path = "ibm-granite/granite-7b-base",
    data_path = "path/to/dataset.jsonl",
    ckpt_output_dir = "data/saved_checkpoints",
    data_output_dir = "data/outputs",

    # define model-trianing parameters
    max_seq_len = 4096,
    max_batch_len = 60000,
    num_epochs = 10,
    effective_batch_size = 3840,
    save_samples = 250000,
    learning_rate = 2e-6,
    warmup_steps = 800,
    is_padding_free = True, # set this to true when using Granite-based models
    random_seed = 42,
)

We'll also need to define the settings for running a multi-process job via torchrun. To do this, create a TorchrunArgs object.

[!TIP] Note, for single-GPU jobs, you can simply set nnodes = 1 and nproc_per_node=1.

torchrun_args = TorchrunArgs(
    nnodes = 1, # number of machines 
    nproc_per_node = 8, # num GPUs per machine
    node_rank = 0, # node rank for this machine
    rdzv_id = 123,
    rdzv_endpoint = '127.0.0.1:12345'
)

Finally, you can just call run_training and this library will handle the rest 🙂.

run_training(
    torchrun_args=torchrun_args,
    training_args=training_args,
)

Customizing TrainingArgs

The TrainingArgs class provides most of the customization options for the training job itself. There are a number of options you can specify, such as setting DeepSpeed config values or running a LoRA training job instead of a full fine-tune.

Here is a breakdown of the general options:

Field Description
model_path Either a reference to a HuggingFace repo or a path to a model saved in the HuggingFace format.
data_path A path to the .jsonl training dataset. This is expected to be in the messages format.
ckpt_output_dir Directory where trained model checkpoints will be saved.
data_output_dir Directory where the processed training data is stored (post filtering/tokenization/masking)
max_seq_len The maximum sequence length to be included in the training set. Samples exceeding this length will be dropped.
max_batch_len Maximum tokens per gpu for each batch that will be handled in a single step. Used as part of the multipack calculation. If running into out-of-memory errors, try to lower this value, but not below the max_seq_len.
num_epochs Number of epochs to run through before stopping.
effective_batch_size The amount of samples in a batch to see before we update the model parameters.
save_samples Number of samples the model should see before saving a checkpoint. Consider this to be the checkpoint save frequency.
learning_rate How fast we optimize the weights during gradient descent. Higher values may lead to unstable learning performance. It's generally recommended to have a low learning rate with a high effective batch size.
warmup_steps The number of steps a model should go through before reaching the full learning rate. We start at 0 and linearly climb up to learning_rate.
is_padding_free Boolean value to indicate whether or not we're training a padding-free transformer model such as Granite.
random_seed The random seed PyTorch will use.
mock_data Whether or not to use mock, randomly generated, data during training. For debug purposes
mock_data_len Max length of a single mock data sample. Equivalent to max_seq_len but for mock data.
deepspeed_options Config options to specify for the DeepSpeed optimizer.
lora Options to specify if you intend to perform a LoRA train instead of a full fine-tune.
chat_tmpl_path Specifies the chat template / special tokens for training.
checkpoint_at_epoch Whether or not we should save a checkpoint at the end of each epoch.
fsdp_options The settings for controlling FSDP when it's selected as the distributed backend.
distributed_backend Specifies which distributed training backend to use. Supported options are "fsdp" and "deepspeed".
disable_flash_attn Disables flash attention when set to true. This allows for training on older devices.

DeepSpeedOptions

We only currently support a few options in DeepSpeedOptions: The default is to run with DeepSpeed, so these options only currently allow you to customize aspects of the ZeRO stage 2 optimizer.

Field Description
cpu_offload_optimizer Whether or not to do CPU offloading in DeepSpeed stage 2.
cpu_offload_optimizer_ratio Floating point between 0 & 1. Specifies the ratio of parameters updating (i.e. optimizer step) on CPU side.
cpu_offload_optimizer_pin_memory If true, offload to page-locked CPU memory. This could boost throughput at the cost of extra memory overhead.
save_samples The number of samples to see before saving a DeepSpeed checkpoint.

FSDPOptions

Like DeepSpeed, we only expose a number of parameters for you to modify with FSDP. They are listed below:

Field Description
cpu_offload_params When set to true, offload parameters from the accelerator onto the CPU. This is an all-or-nothing option.
sharding_strategy Specifies the model sharding strategy that FSDP should use. Valid options are: FULL_SHARD (ZeRO-3), HYBRID_SHARD (ZeRO-3*), SHARD_GRAD_OP (ZeRO-2), and NO_SHARD.

[!NOTE] For sharding_strategy - Only SHARD_GRAD_OP has been extensively tested and is actively supported by this library.

LoraOptions

If you'd like to do a LoRA train, you can specify a LoRA option to TrainingArgs via the LoraOptions object.

from instructlab.training import LoraOptions, TrainingArgs

training_args = TrainingArgs(
    lora = LoraOptions(
        rank = 4,
        alpha = 32,
        dropout = 0.1,
    ),
    # ...
)

Here is the definition for what we currently support today:

Field Description
rank The rank parameter for LoRA training.
alpha The alpha parameter for LoRA training.
dropout The dropout rate for LoRA training.
target_modules The list of target modules for LoRA training.
quantize_data_type The data type for quantization in LoRA training. Valid options are None and "nf4"

Customizing TorchrunArgs

When running the training script, we always invoke torchrun.

If you are running a single-GPU system or something that doesn't otherwise require distributed training configuration, you can just create a default object:

run_training(
    torchrun_args=TorchrunArgs(),
    training_args=TrainingArgs(
        # ...
    ),
)

However, if you want to specify a more complex configuration, we currently expose all of the options that torchrun accepts today.

![NOTE] For more information about the torchrun arguments, please consult the torchrun documentation.

For example, in a 8-GPU, 2-machine system, we would specify the following torchrun config:

MASTER_ADDR = os.getenv('MASTER_ADDR')
MASTER_PORT = os.getnev('MASTER_PORT')
RDZV_ENDPOINT = f'{MASTER_ADDR}:{MASTER_PORT}'

# on machine 1
torchrun_args = TorchrunArgs(
    nnodes = 2, # number of machines 
    nproc_per_node = 4, # num GPUs per machine
    node_rank = 0, # node rank for this machine
    rdzv_id = 123,
    rdzv_endpoint = RDZV_ENDPOINT
)

run_training(
    torchrun_args=torchrun_args,
    training_args=training_args
)
MASTER_ADDR = os.getenv('MASTER_ADDR')
MASTER_PORT = os.getnev('MASTER_PORT')
RDZV_ENDPOINT = f'{MASTER_ADDR}:{MASTER_PORT}'

# on machine 2
torchrun_args = TorchrunArgs(
    nnodes = 2, # number of machines 
    nproc_per_node = 4, # num GPUs per machine
    node_rank = 1, # node rank for this machine
    rdzv_id = 123,
    rdzv_endpoint = f'{MASTER_ADDR}:{MASTER_PORT}'
)

run_training(
    torch_args=torchrun_args,
    train_args=training_args
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

instructlab_training-0.5.0a0.tar.gz (4.8 MB view details)

Uploaded Source

Built Distribution

instructlab_training-0.5.0a0-py3-none-any.whl (45.5 kB view details)

Uploaded Python 3

File details

Details for the file instructlab_training-0.5.0a0.tar.gz.

File metadata

File hashes

Hashes for instructlab_training-0.5.0a0.tar.gz
Algorithm Hash digest
SHA256 0339301861c1f04679efc4a9411e60361792c0f4600662c1066240b0c7e15689
MD5 c171bb6c3e8c88365680150db0c680c9
BLAKE2b-256 0f9edbed2df13196a3e6455fd1943cfd4d1647ef4ef5b4608715d1ad9111912a

See more details on using hashes here.

File details

Details for the file instructlab_training-0.5.0a0-py3-none-any.whl.

File metadata

File hashes

Hashes for instructlab_training-0.5.0a0-py3-none-any.whl
Algorithm Hash digest
SHA256 ca93fe401ae381b0c2c215c68f4bdd7bb42079b031b617763893e6d6030946a0
MD5 7bd805e65d5bb5251b7286259000a41d
BLAKE2b-256 aa684a7fa41f828ba26b9d8c6112a222aa301216f4616f81dca924cafbfab076

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page