Skip to main content

Interpretable Autoencoder

Project description

Intercode - Interpretable Autoencoder

Intercode is a package to learn interpretable latent representation of single-cell data. Intercode contains the implementation of the autoencoder which forces latent dimensions to correspond to predefined gene sets.

Usage and installation

Intercode requires pytorch, numpy and anndata.

Install with pip

::

pip install intercode

See the notebooks <https://github.com/theislab/intercode/tree/main/notebooks>_ for the examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

intercode-0.0.6.tar.gz (740.3 kB view details)

Uploaded Source

Built Distribution

intercode-0.0.6-py3-none-any.whl (8.5 kB view details)

Uploaded Python 3

File details

Details for the file intercode-0.0.6.tar.gz.

File metadata

  • Download URL: intercode-0.0.6.tar.gz
  • Upload date:
  • Size: 740.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for intercode-0.0.6.tar.gz
Algorithm Hash digest
SHA256 8376057f8cf5bf1fab1ee2c20cd3d38a0ea9e5406099d40f6457324984414dab
MD5 9f44bb36b497ee3aa0eb3e62605d84d1
BLAKE2b-256 d4509398f740618ac205190a9e5414c8a601472eefc43cf30889abed7128fc28

See more details on using hashes here.

File details

Details for the file intercode-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: intercode-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 8.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for intercode-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 f8c427af4c1c7f5c36c170949818862f972ff65ea75e014257b33684d2dd1b4e
MD5 16d5dbc5bd8ef15c0cb74336eaead52a
BLAKE2b-256 0318e411bd40ebd9e916c89ce33369fbb2d6636f4fef3e130597aaaa78a6708b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page