Skip to main content

N-dimensional bioimaging data I/O with OME metadata in Python

Project description

iohub

N-dimensional bioimaging produces data and metadata in various formats, and iohub aims to become a unified Python interface to the most common formats used at the Biohub and in the broader imaging community.

Supported formats

Read

  • OME-Zarr (OME-NGFF v0.4)
  • Micro-Manager TIFF sequence, OME-TIFF (MMStack), and NDTiff datasets
  • Custom data formats generated by Biohub microscopes
    • Supported: Falcon (PTI)
    • WIP: Mantis, Dragonfly, Dorado
    • TBA: DaXi

Write

  • OME-Zarr
  • Multi-page TIFF stacks organized in a directory hierarchy that mimics OME-NGFF (WIP)

Quick start

Installation

Install iohub with pip:

git clone https://github.com/czbiohub/iohub.git
pip install /path/to/iohub

For more details about installation, see the related section in the contribution guide.

Command-line interface

To check if iohub works for a dataset:

iohub info /path/to/data/

The CLI can show a summary of the dataset, point to relevant Python calls, and convert other data formats to the latest OME-Zarr. See the full CLI help message by typing iohub or iohub [command] --help in the terminal.

Working with OME-Zarr

Load and modify an example OME-Zarr dataset:

import numpy as np
from iohub import open_ome_zarr

with open_ome_zarr(
    "20200812-CardiomyocyteDifferentiation14-Cycle1.zarr",
    mode="r",
    layout="auto",
) as dataset:
    dataset.print_tree()  # prints the hierarchy of the zarr store
    channel_names = dataset.channel_names
    print(channel_names)
    img_array = dataset[
        "B/03/0/0"
    ]  # lazy Zarr array for the raw image in the first position
    raw_data = img_array.numpy()  # loads a CZYX 4D array into RAM
    print(raw_data.mean())  # does some analysis

with open_ome_zarr(
    "max_intensity_projection.zarr",
    mode="w-",
    layout="hcs",
    channel_names=channel_names,
) as dataset:
    new_fov = dataset.create_position(
        "B", "03", "0"
    )  # creates fov with the same path
    new_fov["0"] = raw_data.max(axis=1).reshape(
        (1, 1, 1, *raw_data.shape[2:])
    )  # max projection along Z axis and prepend dims to 5D
    dataset.print_tree()  # checks that new data has been written

For more about API usage, refer to the documentation and the example scripts.

Reading Micro-Manager TIFF data

Read a directory containing a TIFF dataset:

from iohub import read_micromanager

reader = read_micromanager("/path/to/data/")
print(reader.shape)

Why iohub?

This project is inspired by the existing Python libraries for bioimaging data I/O, including ome-zarr-py, tifffile and aicsimageio. They support some of the most widely adopted and/or promising formats in microscopy, such as OME-Zarr and OME-Tiff.

iohub bridges the gaps among them with the following features:

  • Efficient reading of data in various TIFF-based formats produced by the Micro-Manager/Pycro-Manager acquisition stack.
  • Efficient and customizable conversion of data and metadata from Tiff to OME-Zarr.
  • Pythonic and atomic access of OME-Zarr data with parallelized analysis in mind.
  • OME-Zarr metadata is automatically constructed and updated for writing, and verified against the specification when reading.
  • Adherence to the latest OME-NGFF specification (v0.4) whenever possible.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iohub-0.1.0.dev3.tar.gz (60.0 kB view details)

Uploaded Source

Built Distribution

iohub-0.1.0.dev3-py3-none-any.whl (58.4 kB view details)

Uploaded Python 3

File details

Details for the file iohub-0.1.0.dev3.tar.gz.

File metadata

  • Download URL: iohub-0.1.0.dev3.tar.gz
  • Upload date:
  • Size: 60.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for iohub-0.1.0.dev3.tar.gz
Algorithm Hash digest
SHA256 35d9719cdf7fe96e87f090035b57bf198efc490442127f65ff010545a65de79d
MD5 baad9234fae4bed9050a8632f54948b5
BLAKE2b-256 b7ee36eb5ea2c2eed0365e945026cbe9cd700cd3f043cb0f72034c154a5ff089

See more details on using hashes here.

File details

Details for the file iohub-0.1.0.dev3-py3-none-any.whl.

File metadata

  • Download URL: iohub-0.1.0.dev3-py3-none-any.whl
  • Upload date:
  • Size: 58.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for iohub-0.1.0.dev3-py3-none-any.whl
Algorithm Hash digest
SHA256 ccaad86b7ad94ecb5642596aeaa99af065e69c84dab475e264c9c38e8697a9d2
MD5 09cbb864c4d0824a59031de7a2652734
BLAKE2b-256 332fb331228e374100e499053efa0d2776c420424ff32f273313f3576c19e1ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page