Skip to main content

Multiprocess directory iteration via os.scandir() with progress indicator via tqdm bars.

Project description

IterFilesystem

Multiprocess directory iteration via os.scandir()

Who’s this Lib for?

You want to process a large number of files and/or a few very big files and give feedback to the user on how long it will take.

Features:

  • Progress indicator:

    • Immediately after start: process files and indication of progress via multiprocess

    • process bars via tqdm

    • Estimated time based on file count and size

  • Easy to implement extra process bar for big file processing.

  • Skip directories and file name via fnmatch.

How it works:

The main process starts statistic processes in background via Python multiprocess and starts directly with the work.

There are two background statistic processes collects information for the process bars:

  • Count up all directories and files.

  • Accumulates the sizes of all files.

Why two processes?

Because collect only the count of all filesystem items via os.scandir() is very fast. This is the fastest way to predict a processing time.

Use os.DirEntry.stat() to get the file size is significantly slower: It requires another system call.

OK, but why two processed?

Use only the total count of all DirEntry may result in bad estimated time Progress indication. It depends on what the actual work is about: When processing the contents of large files, it is good to know how much total data to be processed.

That’s why we used two ways: the DirEntry count to forecast a processing time very quickly and the size to improve the predicted time.

requirements:

  • Python 3.6 or newer.

  • tqdm for process bars

  • psutils for setting process priority

  • For dev.: Pipenv. Packages and virtual environment manager

contribute

Please: try, fork and contribute! ;)

Build Status on travis-ci.org

travis-ci.org/jedie/IterFilesystem

Build Status on appveyor.com

ci.appveyor.com/project/jedie/IterFilesystem

Coverage Status on codecov.io

codecov.io/gh/jedie/IterFilesystem

Coverage Status on coveralls.io

coveralls.io/r/jedie/IterFilesystem

Requirements Status on requires.io

requires.io/github/jedie/IterFilesystem/requirements/

Example

Use example CLI, e.g.:

~$ git clone https://github.com/jedie/IterFilesystem.git
~$ cd IterFilesystem
~/IterFilesystem$ pipenv install
~/IterFilesystem$ pipenv shell
(IterFilesystem) ~/IterFilesystem$ print_fs_stats --help
(IterFilesystem) ~/IterFilesystem$ pip install -e .
...
Successfully installed iterfilesystem

~/IterFilesystem$ $ poetry run print_fs_stats --help
usage: print_fs_stats.py [-h] [-v] [--debug] [--path PATH]
                         [--skip_dir_patterns [SKIP_DIR_PATTERNS [SKIP_DIR_PATTERNS ...]]]
                         [--skip_file_patterns [SKIP_FILE_PATTERNS [SKIP_FILE_PATTERNS ...]]]

Scan filesystem and print some information

optional arguments:
  -h, --help            show this help message and exit
  -v, --version         show program's version number and exit
  --debug               enable DEBUG
  --path PATH           The file path that should be scanned e.g.: "~/foobar/"
                        default is "~"
  --skip_dir_patterns [SKIP_DIR_PATTERNS [SKIP_DIR_PATTERNS ...]]
                        Directory names to exclude from scan.
  --skip_file_patterns [SKIP_FILE_PATTERNS [SKIP_FILE_PATTERNS ...]]
                        File names to ignore.

example output looks like this:

(IterFilesystem) ~/IterFilesystem$ $ print_fs_stats --path ~/IterFilesystem --skip_dir_patterns ".*" "*.egg-info" --skip_file_patterns ".*"
Read/process: '~/IterFilesystem'...
Skip directory patterns:
    * .*
    * *.egg-info

Skip file patterns:
    * .*

Filesystem items..:Read/process: '~/IterFilesystem'...

...

Filesystem items..: 100%|█████████████████████████████████████████|135/135 13737.14entries/s [00:00<00:00, 13737.14entries/s]
File sizes........: 100%|██████████████████████████████████████████████████████████████|843k/843k [00:00<00:00, 88.5MBytes/s]
Average progress..: 100%|███████████████████████████████████████████████████████████████████████████████████████|00:00<00:00
Current File......:, /home/jens/repos/IterFilesystem/Pipfile


Processed 135 filesystem items in 0.02 sec
SHA515 hash calculated over all file content: 10f9475b21977f5aea1d4657a0e09ad153a594ab30abc2383bf107dbc60c430928596e368ebefab3e78ede61dcc101cb638a845348fe908786cb8754393439ef
File count: 109
Total file size: 843.5 KB
6 directories skipped.
6 files skipped.

History

Donating


Note: this file is generated from README.creole 2020-03-16 18:09:30 with "python-creole"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

IterFilesystem-1.4.3.tar.gz (20.5 kB view details)

Uploaded Source

Built Distribution

IterFilesystem-1.4.3-py3-none-any.whl (23.5 kB view details)

Uploaded Python 3

File details

Details for the file IterFilesystem-1.4.3.tar.gz.

File metadata

  • Download URL: IterFilesystem-1.4.3.tar.gz
  • Upload date:
  • Size: 20.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.9

File hashes

Hashes for IterFilesystem-1.4.3.tar.gz
Algorithm Hash digest
SHA256 7a51eb6e7dc365dcf82aac0cbd244189d3dbb4243f54887033ee634565f0ac03
MD5 4ab123434c034157ffc49d9144d5818e
BLAKE2b-256 fb2a7b3bf7367a0722cfd4b3e0abdb845216944e54184dc628ae15dba7714703

See more details on using hashes here.

File details

Details for the file IterFilesystem-1.4.3-py3-none-any.whl.

File metadata

  • Download URL: IterFilesystem-1.4.3-py3-none-any.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.9

File hashes

Hashes for IterFilesystem-1.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 2f6d97369ffce0bff16c17d7d47b1af5d5a8d9c42a14eed7b90247ed9ce65c76
MD5 c26732f830d268e7679147b2b02cf33e
BLAKE2b-256 e25e2d061c014f8edce4383737729ba49a24d0fd4693f56813fe0c1c44d56bdf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page