Skip to main content

This module implements cuberille implicit surface polygonization for ITK.

Project description

This method operates by diving the surface into a number of small cubes called cuberilles. Each cuberille is centered at a pixel lying on the iso-surface and then quadrilaterals are generated for each face. The original approach is improved by projecting the vertices of each cuberille onto the implicit surface, smoothing the typical block-like resultant mesh.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk_cuberille-1.0.0-cp36-cp36m-win_amd64.whl (319.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

itk_cuberille-1.0.0-cp36-cp36m-manylinux1_x86_64.whl (561.9 kB view details)

Uploaded CPython 3.6m

itk_cuberille-1.0.0-cp36-cp36m-macosx_10_6_x86_64.whl (541.7 kB view details)

Uploaded CPython 3.6m macOS 10.6+ x86-64

itk_cuberille-1.0.0-cp35-cp35m-win_amd64.whl (319.2 kB view details)

Uploaded CPython 3.5m Windows x86-64

itk_cuberille-1.0.0-cp35-cp35m-manylinux1_x86_64.whl (561.9 kB view details)

Uploaded CPython 3.5m

itk_cuberille-1.0.0-cp35-cp35m-macosx_10_6_x86_64.whl (541.7 kB view details)

Uploaded CPython 3.5m macOS 10.6+ x86-64

itk_cuberille-1.0.0-cp34-cp34m-manylinux1_x86_64.whl (561.9 kB view details)

Uploaded CPython 3.4m

itk_cuberille-1.0.0-cp34-cp34m-macosx_10_6_x86_64.whl (541.7 kB view details)

Uploaded CPython 3.4m macOS 10.6+ x86-64

itk_cuberille-1.0.0-cp27-cp27mu-manylinux1_x86_64.whl (562.0 kB view details)

Uploaded CPython 2.7mu

itk_cuberille-1.0.0-cp27-cp27m-win_amd64.whl (332.9 kB view details)

Uploaded CPython 2.7m Windows x86-64

itk_cuberille-1.0.0-cp27-cp27m-manylinux1_x86_64.whl (562.0 kB view details)

Uploaded CPython 2.7m

itk_cuberille-1.0.0-cp27-cp27m-macosx_10_6_x86_64.whl (541.9 kB view details)

Uploaded CPython 2.7m macOS 10.6+ x86-64

File details

Details for the file itk_cuberille-1.0.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d0887c356e3907d120cd22f3b3e0615b438d429e7cad98dc01e39663f493e502
MD5 945d840a503c5d43a9af41d449f6b12c
BLAKE2b-256 1cacbc29211a2861a533d7fa60bdebe7e73fc2ceb551d0131baf284292c73bdb

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5108bd1c9d51623a4e3c5dc9e652c41791de11476e8e19c26ed9da6d4a0576a0
MD5 2beb2970a04cc81ab11d13d59e92954a
BLAKE2b-256 9b044936d4acfadabe80d57db8012cf1c588505bc19e54635112b078f426f7b3

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp36-cp36m-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp36-cp36m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 ce631598810956c423491fe7011b05f3fda77f82a32c39d1689b9001126d15d8
MD5 ef8c89c8b7e48ee6e6cf03a504d4741f
BLAKE2b-256 62ed3f60a47a4ab762ac6c0ff9454235978548e113c7ef4230d6383a08a65c97

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 accba2c1dbf341afac9ee417851fd04c7eb17ecbb62c3d648d19f177c1e6a075
MD5 c4ae737f99befcd1defa8b568a632cc7
BLAKE2b-256 e19447e93524e9cf5ebf55cce4d548c3b935e07d9642e8ab3b92f1c272445049

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 049d6f85a40889f9848350a317abd75e4a7b8da9d036d44d5e81467c6d46cfbd
MD5 730aa09f9d703dfdfa41ad5976354bd9
BLAKE2b-256 55ef143e5aaa655d0923d967bbe1e5f41671ea1b76096a67c4b546204036ff6a

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp35-cp35m-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp35-cp35m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 1e9d2dc282882017ce4df2bceae0df37f7c882666c324caafca55dcdbc61c3e0
MD5 e0dd0083cd77f37a26c37c1074e46ebe
BLAKE2b-256 1370ec8a52d7445353891309777f264ded024afb832773cd700a0ee580609730

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 78a4197454da98a6c31d68b35427605d1f2ee3d7477ccb57f830b16d481632a2
MD5 ae5176f0bdfd230be4db47030ff0beee
BLAKE2b-256 25f8e9e6e9beef3abb4e6f989615a7905cbe7eac8eda0c835678132a50ee02ee

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp34-cp34m-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp34-cp34m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 d6fd9bdf4c335ce9419c7a85a362afcef91c5eb400dfd15eacdfc1f8c0751065
MD5 48156bcf66f21d399be2d7238c639d4f
BLAKE2b-256 4e74e21aba01f8baef3f13d8ab449716681ba2f8085a358158cec73b2bb0bec0

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a18e73095ecb00f9596119321df6568f56fabdfdbf150b69f19e22d5b6293620
MD5 a65655a2dfae60c1a27509075eb73dc9
BLAKE2b-256 1659725a9c0ab4952394ec0454ae1c8f59172f080a81301f5b73a92e9bbe6f59

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 3a03ebb9e8b645856b2ae96c1160194894d14d02bd2115149689a5b9233d57a2
MD5 19022b0512b68925e452736a0302c6fd
BLAKE2b-256 db8fa84ca439df6b863ff651553aea94b4159f45ee7292cce40a0606c2821db3

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 745eb3e858ff45733d977ebb6504d131d820de9c669601da112be452952c7a0e
MD5 82b75b28e09375aaf9f5ae1e04acaf2e
BLAKE2b-256 6209ce32fa1e5f5bb02f7b358a374ddc0572912e224a25f39d176d08a5a72f03

See more details on using hashes here.

File details

Details for the file itk_cuberille-1.0.0-cp27-cp27m-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for itk_cuberille-1.0.0-cp27-cp27m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 292872bceef3a016ff2356d3283a5ba44a6cb118d931364f9a70c4f6313114d5
MD5 71991f95c120dbf7dcde4349885d151d
BLAKE2b-256 7cc4b6009aba2e02e9f29b6047f5fa87d267663127489dbcb577dbc0a62d913b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page