Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

itk-io

ITK is an open-source, cross-platform library that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional scientific images.

This package contains classes for reading and writing images and other data objects.

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI Powered by NumFOCUS

C++ Python
Linux Build Status Build Status
macOS Build Status Build Status
Windows Build Status Build Status
Linux (Code coverage) Build Status

Links

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

The ITK project uses an open governance model and is fiscally sponsored by NumFOCUS. Consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.


ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Supporting ITK

ITK is a fiscally sponsored project of NumFOCUS, a non-profit dedicated to supporting the open source scientific computing community. If you want to support ITK's mission to develop and maintain open-source, reproducible scientific image analysis software for education and research, please consider making a donation to support our efforts.

NumFOCUS is 501(c)(3) non-profit charity in the United States; as such, donations to NumFOCUS are tax-deductible as allowed by law. As with any donation, you should consult with your personal tax adviser or the IRS about your particular tax situation.

Professional Services

Kitware provides professional services for ITK, including custom solution creation, collaborative research and development, development support, and training.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk_io-5.3.0-cp311-cp311-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

itk_io-5.3.0-cp311-cp311-manylinux_2_28_x86_64.whl (25.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

itk_io-5.3.0-cp311-cp311-manylinux_2_28_aarch64.whl (23.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

itk_io-5.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

itk_io-5.3.0-cp311-cp311-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

itk_io-5.3.0-cp311-cp311-macosx_10_9_x86_64.whl (24.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

itk_io-5.3.0-cp310-cp310-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

itk_io-5.3.0-cp310-cp310-manylinux_2_28_x86_64.whl (25.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

itk_io-5.3.0-cp310-cp310-manylinux_2_28_aarch64.whl (23.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

itk_io-5.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

itk_io-5.3.0-cp310-cp310-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

itk_io-5.3.0-cp310-cp310-macosx_10_9_x86_64.whl (24.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

itk_io-5.3.0-cp39-cp39-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

itk_io-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (25.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

itk_io-5.3.0-cp39-cp39-manylinux_2_28_aarch64.whl (23.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

itk_io-5.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

itk_io-5.3.0-cp39-cp39-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

itk_io-5.3.0-cp39-cp39-macosx_10_9_x86_64.whl (24.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

itk_io-5.3.0-cp38-cp38-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

itk_io-5.3.0-cp38-cp38-manylinux_2_28_x86_64.whl (25.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

itk_io-5.3.0-cp38-cp38-manylinux_2_28_aarch64.whl (23.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

itk_io-5.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

itk_io-5.3.0-cp38-cp38-macosx_10_9_x86_64.whl (24.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

itk_io-5.3.0-cp37-cp37m-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

itk_io-5.3.0-cp37-cp37m-manylinux_2_28_x86_64.whl (25.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

itk_io-5.3.0-cp37-cp37m-manylinux_2_28_aarch64.whl (23.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

itk_io-5.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

itk_io-5.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (24.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file itk_io-5.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: itk_io-5.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for itk_io-5.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5808a5d9f76780dd6408a6fb12b7c4e344bb147b1fc6645865da195aac134bea
MD5 2ac2a6d9da625748ba4e5143eb1c1a0c
BLAKE2b-256 dfabe7d3351f5e031706538e8d6672d4b17f48c43b37d8d237286e80e3181263

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8f71c21249c88fecf68b6958e6987d76de802a556cad4c64a0d2f3aea3ad4aa2
MD5 6e167e3e6513e031e3b649305bed7e0f
BLAKE2b-256 e84f44cf53433c81fae01ed56f16676f0d3c4f5e4424670a2d4d40eeed647951

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ec820b467f7ca8af10a69fce84bbf7fad41d439c23796cd0547d69b72db25847
MD5 cd748afd1a9246d38ce329944e7eae0b
BLAKE2b-256 13cf5a3d5bcd040326aefee38702ab4268ebeca8aaf08d373c1704fea3c2fe64

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 82039102e08ab0a9a8cb8b6968130bc2fc26f10785e1f089880f176a285f8b45
MD5 ff14db10ef774718bf044cbc306ba323
BLAKE2b-256 0d8755b0d962ceeb9991c6280bcb92a90078b7b2ed125abeb17d66143114596f

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e95c55009cabcce62a0bd5c5fa48aaa2a3d7e7de8926d8da355b02615f83c7e1
MD5 496639c5b3c8fd04f96f398587ae7092
BLAKE2b-256 95cc292c5ed848c049728def56e517d5090bef7213e0eebdd8bb69c1edd9e586

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 44f857cbb44b0f79cbc88f74417f58412a31246e6cd563d8082fe313dd2afa7b
MD5 2498852098d283b2081d30434695ba3b
BLAKE2b-256 1b16592b85abf2c17c0483dbf745d4bb3b490cea08241a48b9f403a0a89211f3

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: itk_io-5.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for itk_io-5.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1176e67f459cfc053fe1add8c1a13865743459b2c1436892590e3be14a5db303
MD5 ebaeff8398083d3973b35538cda4ea0b
BLAKE2b-256 f803272795ac51c8281dfbd983ceb5d5001b4286619a790f7b59b23448715f1a

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fdb812c744ac98b437609f490d163fa69800476ca0a9d811f62307973962aa7c
MD5 8ce5bcba11d016701de208cb7dcb6fc3
BLAKE2b-256 3acd501d9ebf211b8bf71ea6cce69fa54b5634778448a019581bf3ca448c85ee

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4aa7e434097a9b3c0a07e18e545652ac15aa66744d001c0a527aee548ad0feee
MD5 2f6f231eb9395379645883e05b6c8ce0
BLAKE2b-256 9ac730e2257910b0c0e14197cd7af2ebbd4a807d4d3dd1f95bec5922034c5770

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd338c3097237fbdda0e06ee1d523c13392cc3436a4263658df55d3eae32726a
MD5 b01931f776452f274ce6e15c66f99f03
BLAKE2b-256 526cbab6365ef11ecc910ff8eca23561b83bfd87b4f538d483daacf86fb81589

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc279b0f7c87002a9e7ac9d7fbd8fcbf3ecc1378b15b738086bb3fb47c23e2dd
MD5 44fe3134666bc76a6d97e6ea310a64bc
BLAKE2b-256 235c85cf70d8240b71f6e0579fadc53be59e76f6dc69271c1c3a024b90c60c89

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bc3fc771ccfc136ce3aed9e80d29c90e83128c150087309a59b9e0a936bd699e
MD5 60366e7d67f83e90e5e77c8e6b8b2dc6
BLAKE2b-256 2d4487c4b79ce06dc203460f67668c700e2a15ea3431727b7c1acd5bc294ce0a

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: itk_io-5.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for itk_io-5.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b82171c335b0f973274f65faaa40b91e80006a464a3427c460f4158fbb2558a4
MD5 05414e6a0c885b104ebda645a647fb88
BLAKE2b-256 430ee80a54e3a80ea3c89270f6ea7bf5e95503c0da54c0b3690f2cecab524af0

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5a2f429734593f0afb624004445d59dda0e3500ebe6e5e86f8f91c5f01e60e4a
MD5 edec0009cc35fc850b9bdae934c25479
BLAKE2b-256 61bf5641314cb1dfdff0fc49e9ffaf53a58e1571b1da9400463d3ef67e936fef

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5284b6e59c6b63375cf1e85e574b33a4ecf235ebe7b6ee2ab13846bbdf128a1a
MD5 c3837ba5ee10102743cb85e50751234f
BLAKE2b-256 3129b8fb5c75cd4395f8d221ef31d69acec8b480563035096e2f4efd2505ff9f

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28baef4b92be1452f5a8a6bba8a006f0c127468ae89b127352a9e7441d640767
MD5 e48c20c7afd8f1813c9c96a9f74c4916
BLAKE2b-256 484441b9acf161597288afad9187d82f2eb1191af1d0a146e165b2e2109293cd

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ca81b07d5358f9ad32b56571e09cd7167f71ebd66240bd581fd9504db8594dd
MD5 9a708a5c984e2de2ddc5c20f055be4ec
BLAKE2b-256 2dae9091fb271d32ce048c6859b72d61d2b9ad4b65f1c116dd34c08a784339aa

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 888c1a587e7f11796d9a680a23a713929928c22daf4af216199ced181f34d8e7
MD5 57f7762cc7159275e47d70e568ded6df
BLAKE2b-256 2d9ad66ef998dada9c4797c9b8be57a171cf01361ebb1cb77699ab8306c4fc84

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: itk_io-5.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for itk_io-5.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bc15b379ccba1c7d0af1559536ce943d15725e01fa571ccbca319ce56dafaaee
MD5 001fa536205cfa797cc5836e87911df6
BLAKE2b-256 ca4b2633088e598260a153dc017ed507b32d03f1be0ad081bafd310ee643fec1

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 39651d78bbba831da6e84ab865cea81a16c0f5f80a25aebe07f98e32f7cab361
MD5 4a0981854471784ffadcd084502cfc6c
BLAKE2b-256 14bc51284304d42a0c587af76783d997a289041dc724c325ac0d044697c79d4f

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 03d562a710053be4484d2e856eb527365e74699618aa102e9a3620817f1acc8e
MD5 52cc7f9e2f9aa785c13589b0c1be1b04
BLAKE2b-256 fe10ae394f6063bf433a0b48512502ed0fa05e6458088fd274c106f1db66f0df

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aee4fccb9aa5ada4190d9dc839f64b7d5e66f4fad4b35d9c33779833aa8ea5ad
MD5 55a754fa6b3f772a8ee4bfbbe9214982
BLAKE2b-256 9e747764e3c9b1f5932a4c61a39835b82966c2b4289b5d999b321b948eafb842

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e3a0e4ac2c2006bf60e31f8c77c75c35d2fb20a2b09933ef8bd09fc4c73c6386
MD5 0f161fd82faf821593a26fadc971c1d0
BLAKE2b-256 bea421900c9995517a0b4445e08bbb89450ed24ef6d4baf97350e55f8b9172b0

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: itk_io-5.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for itk_io-5.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5e2966a229fcd684051bc7f186d9d74171aa6851f1244926d05f73171e2d15af
MD5 feafa48c4c86a95ab515ef1ccd0c1d76
BLAKE2b-256 ce4c7968f9c617cce331b76d6ab7c47b55e0aa35900b1d867984a43fb5ac116b

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c935079d2e3e039a19ce5053a3020b41d2d6ab8adc6bce20aed2a8741eca8da5
MD5 036ee8a39fadec19d65cf64dc572727a
BLAKE2b-256 b80de5c922c3014d3d0977d2156c6472b575b8f9536984ed3b13e2140daf0142

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c90d8e6d0097515fc6ef320696be6ecefc476b4a2dca1af16700d95f46bebad1
MD5 6503da620136ddbbabdbc563abc3fd06
BLAKE2b-256 aca7cae76761e57e6cff486763f8187aa391352fdf834cde471968ef95aebd24

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5031643e7b34e999c635e413b50e4174a5b3e41492b5dca73042db20014fc5fe
MD5 ce0999417a997394934ecb319e6dc35b
BLAKE2b-256 b5ca1e975c60fc55ce7793c747ea3161de4bb91ad34ee7e6417f85dd62876698

See more details on using hashes here.

File details

Details for the file itk_io-5.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 32445a865a33a0500650826957031493e8c5ebcf54c8b538e104f21e7d345ab0
MD5 efc5c7ae3e5e3456228af515dd071bbd
BLAKE2b-256 f53e54b55b36f408c8f99a363cde3999824564d8fc7429e80e894ed411f955d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page