Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI Powered by NumFOCUS

C++ Python
Linux Build Status Build Status
Windows Build Status Build Status
macOS Build Status Build Status
macOS (Apple Silicon) ITK.macOS.Arm64
Linux (Code coverage) Build Status

Links

Note: For questions related to ITK, please use the official Discussion space: the issue tracker is reserved to track different aspects of the software development process, as highlighted by the available templates.

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

The ITK project uses an open governance model and is fiscally sponsored by NumFOCUS. Consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.


ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Supporting ITK

ITK is a fiscally sponsored project of NumFOCUS, a non-profit dedicated to supporting the open source scientific computing community. If you want to support ITK's mission to develop and maintain open-source, reproducible scientific image analysis software for education and research, please consider making a donation to support our efforts.

NumFOCUS is 501(c)(3) non-profit charity in the United States; as such, donations to NumFOCUS are tax-deductible as allowed by law. As with any donation, you should consult with your personal tax adviser or the IRS about your particular tax situation.

Professional Services

Kitware provides professional services for ITK, including custom solution creation, collaborative research and development, development support, and training.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk_io-5.4.0-cp311-abi3-win_amd64.whl (8.7 MB view details)

Uploaded CPython 3.11+ Windows x86-64

itk_io-5.4.0-cp311-abi3-manylinux_2_28_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.11+ manylinux: glibc 2.28+ x86-64

itk_io-5.4.0-cp311-abi3-manylinux_2_28_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.11+ manylinux: glibc 2.28+ ARM64

itk_io-5.4.0-cp311-abi3-manylinux_2_17_x86_64.whl (26.1 MB view details)

Uploaded CPython 3.11+ manylinux: glibc 2.17+ x86-64

itk_io-5.4.0-cp311-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.7 MB view details)

Uploaded CPython 3.11+ manylinux: glibc 2.17+ x86-64

itk_io-5.4.0-cp311-abi3-macosx_11_0_arm64.whl (18.5 MB view details)

Uploaded CPython 3.11+ macOS 11.0+ ARM64

itk_io-5.4.0-cp311-abi3-macosx_10_9_x86_64.whl (23.2 MB view details)

Uploaded CPython 3.11+ macOS 10.9+ x86-64

itk_io-5.4.0-cp310-cp310-win_amd64.whl (8.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

itk_io-5.4.0-cp310-cp310-manylinux_2_28_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

itk_io-5.4.0-cp310-cp310-manylinux_2_28_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

itk_io-5.4.0-cp310-cp310-manylinux_2_17_x86_64.whl (26.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

itk_io-5.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

itk_io-5.4.0-cp310-cp310-macosx_11_0_arm64.whl (18.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

itk_io-5.4.0-cp310-cp310-macosx_10_9_x86_64.whl (23.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

itk_io-5.4.0-cp39-cp39-win_amd64.whl (8.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

itk_io-5.4.0-cp39-cp39-manylinux_2_28_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

itk_io-5.4.0-cp39-cp39-manylinux_2_28_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

itk_io-5.4.0-cp39-cp39-manylinux_2_17_x86_64.whl (26.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

itk_io-5.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

itk_io-5.4.0-cp39-cp39-macosx_11_0_arm64.whl (18.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

itk_io-5.4.0-cp39-cp39-macosx_10_9_x86_64.whl (23.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

itk_io-5.4.0-cp38-cp38-win_amd64.whl (8.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

itk_io-5.4.0-cp38-cp38-manylinux_2_28_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

itk_io-5.4.0-cp38-cp38-manylinux_2_28_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

itk_io-5.4.0-cp38-cp38-manylinux_2_17_x86_64.whl (26.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

itk_io-5.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

itk_io-5.4.0-cp38-cp38-macosx_10_9_x86_64.whl (23.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file itk_io-5.4.0-cp311-abi3-win_amd64.whl.

File metadata

  • Download URL: itk_io-5.4.0-cp311-abi3-win_amd64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.11+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for itk_io-5.4.0-cp311-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 8c0eacb3aa100e4b369a673bb0e65c3c48c411bc4b716069bce4cee8c3f9e1cc
MD5 93e9f53948b18eed05e79153059ce77f
BLAKE2b-256 1d5de542c16e7647a544fd51ced24c6ca8d8c154a4f62d42bcd6bfa65b5c1a12

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp311-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp311-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 393d711f9edb248aed402e7fc9613045536dbd6b45fc8db638a28d0a409fe974
MD5 e6bb9c41d8bb7ac43ccb32a768bc9241
BLAKE2b-256 1161cfd1cc04d2cd6c603c0abcd1f4bc0d65bff6ee9b84ebcbd828277b807887

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp311-abi3-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp311-abi3-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 11a34ac45b960aa883e1758ead15c5394814964573c93d736fc04f021c18cd22
MD5 23da2398e96a2627e701d8be671d54e6
BLAKE2b-256 d679acd142f3052c408eb41f5e6934b954decb49b6129370262647cfda343208

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp311-abi3-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp311-abi3-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 cc2f15207ebdf564f65ef0ba6b6896a0617b345a03f83966fc71975ea0a0319a
MD5 c3af5093514b4759851939802ec52440
BLAKE2b-256 864c28a523b417e1b3e9e9731e4e856551f3dafe24cd5c06a694b806b6e91781

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp311-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp311-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 593baf2403409bf19e9a29ac270d4d7efd2272c16006f686ab22bc82a74d2807
MD5 224a1c1433561786105d1ffb8f35c648
BLAKE2b-256 56fcad08560922ee9da4e41bc2781e4a7d65920f9603886b76fc3fcd5414949a

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp311-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp311-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d969a2ab2775b2ace36edee274ffe4839b21c7ccd634844082028f9f373dfedb
MD5 0d8a0b8d31de7a9ae9dfb1f1cc9accf7
BLAKE2b-256 516145c8709b872d28bb37c0cdbf9f1cd87772f0a0198564d7af39f0d98438f6

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp311-abi3-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp311-abi3-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dec6e586dd8b598cd5bdb264e115c1ae1c718d00de97d5568fba1c4c8b028d71
MD5 c7fdcf5ae99ebd73ab27f22b042caf45
BLAKE2b-256 ba8f14c86be78042d08e23c60c5d4df2698d245c5c5f02ce5d7ebcd07b8dcde3

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: itk_io-5.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for itk_io-5.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 edf58db0a2de5e9ef16107c177d0b83e394d5db04532d6329c256dd90f1b7e49
MD5 569a4966307d9cf09af9bf0c254c5421
BLAKE2b-256 bad7811c380efc6f5fb5660a196bbd55d062d4e698fe3d8709b417c1fd6c16b1

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 08296c01971a5e14a5f8164828b40feb451ae6c2e7a2ddf544fed0de10100089
MD5 e695bc90bb926aea9f01bc127f587f2f
BLAKE2b-256 4008052e45b6161d5dd083f324faf4486a7b76e1b333fec5c13e521cf0f2bed9

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c1be6c30be4abfe840668732225314676990cce89f417b764237f871f3d95b2a
MD5 0812e1b9d9f5b39832c22baa930d2622
BLAKE2b-256 6a8e3b4d35ccf9d0b885c0abaae11f8c1abc4712eb7829fd57b5ebc83e37357f

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 17154c05074a47ae69013f0c9be40a98fe7ef0cf9621f881e06b12387aba6e51
MD5 41fd38c7039318fd0b3c4b51b208f535
BLAKE2b-256 53443fe7fadb6fbfd88ee06785102b56c07db6f53f6ead6f8aa80be4d9c44913

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8f7da697610b9b41672b27955a5e8067cebc1b5eb3eeca23401ad77307868a9
MD5 82fc230109b9090f17fa6c4c87aafa64
BLAKE2b-256 a7be81248d9a2faf8f167822e1f456434ec14221e19e0b731778db77345a8816

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36b78959392a97f6d02175171cb1643f0c160c45a35bad425f00e0fbd891a31f
MD5 084f09db48ec0176064200187b0979cf
BLAKE2b-256 8a7f46aab68f23f35e2770aa1baf4e4c21c837913e0a7f61e651b943948f3cdd

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fbb7cbbc90cdaa06ec59a4b4f122f426846c3f26d8d9beea5c39f2a3638664e2
MD5 2e14d0334d5a4838c71f65522e8b63fa
BLAKE2b-256 261a8484124b2732f1b54ffe802955c5ced8aaacad25c4de15bd7b13605e945a

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: itk_io-5.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for itk_io-5.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d512eb2ae3bd6dd0eb5e6b82715eb471773202a4ad6830bd86f1f327f3829c55
MD5 9473c2840f7d430f41dded52bd771757
BLAKE2b-256 14535cbcd48a40309bbe0407e35ad90922ec94615129e3fabfb65b729b77d896

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 78e6263a9671f11bb16811b62163187b79bfb380e1adfdb4f949c383902c9a99
MD5 661a683b4a6fa4c57b9ecbaf1620638f
BLAKE2b-256 6f0cd1d16f341066bb3595beefbc888fb8a24354ffe5c4345724d9a0f559a285

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6d4dd39e0a07c9c68be2dba259187290e462d6e12baa7a99d2a54bcd59777598
MD5 14cc65546a5db30ea6f620a47013bfd8
BLAKE2b-256 a70b048c3a172c7ee501b42fdb7b8e0d166401f34b02d641c45df39db92f763d

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5607dd20c7e1223dc6a270b60a0f5311b1e1e5cc37778b7706d68f487f84f0c1
MD5 23174d0e1734fb72b5a970273aecab9d
BLAKE2b-256 2b310b8ce28a75934821cbdc3d86b5eb967e3833d29550e23017d54bb8a0b98a

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d7a5b6f03e390aa16d3f2714ed17551d75a98475369be7a498fce9bb26c65a8
MD5 8829b850f06a6d4ad057851063ceca2f
BLAKE2b-256 87a9901ca5e898b4741195217ae3e547a9e3d5901a083f6ab7c0437adcd3fdd3

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0042cee25fdfea33a20a21c44a74714c1d0f7ee62f822f1678e6008ad2142e4e
MD5 7a8f7814e25dca1010972f5a77690892
BLAKE2b-256 d37d714bc4199380a2290c8ae05a1b2d3476a0e0ea921b0a173e07bcdf9af6f4

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b8e706038d64908db0521bd975721716d0013d6fd5b6dcfee6751ba2a4633c0
MD5 24491878adbcce54147fdfd8e62f14d9
BLAKE2b-256 37b78711ba25a35f142a9273b3e962aca08393b4cf2cc35dd694d229aa0bc51b

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: itk_io-5.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for itk_io-5.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7545aa5ebafa89632cd7e2f2a329f8855158cc62a72178c9c2c32c1ed2a46d4d
MD5 c385d07852a2a3522579c54096f6c65c
BLAKE2b-256 f726ad1b415e8c3c683c3a57d137a2fbf994e6fd23bba2dc2162570e823c8db9

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 703b62ad7e46be9384930743936ceb553ec6ce91b539e9ddb3fa3e01f22c8e83
MD5 c337e4226935e38effba087941ec6f4c
BLAKE2b-256 5e4015da7b8b308ab8c575d2a34d43e3583d06d32adb025f3a863ce554511c47

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ac76e4055723df3e188020cdf4947539fcdaddd48222a9c2ff13b79fcda5fb49
MD5 db1db5e0d17a2bd658f261a44fc6fd1a
BLAKE2b-256 8631012895733590b528fbdfa7d8c48febb49a41c99914a4b341078c3f1cbc0a

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp38-cp38-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp38-cp38-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 2849becbc6805da41845edb42e2e7f457e2a8eb1ff2ec1feffabf129c695574d
MD5 a93d5a8110f2560484cd5bd552324657
BLAKE2b-256 2180f4db40fb48073eb7f2633b8ac2aeca35afc4574dc02e95ad376f3f91403d

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d861210bbc09ea56ba02edd7cebc2ad23132af81630f6f441c7a5bf1889823b
MD5 59a775ac412970dd0432c300f99a1bab
BLAKE2b-256 6729f418af645cacdf708e6ed8f179180e91e3cd09915be3b488a323e43092a1

See more details on using hashes here.

File details

Details for the file itk_io-5.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_io-5.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11338a89fed11a8b930f008d6c217956e4dcd4ba10681894b7643a3f2f6d5455
MD5 5822102226d4a89f58e3419849967b81
BLAKE2b-256 e86acdeda9e6bc0101571ba04e2c659849298f0ebbd60434bf50f510fc8cc771

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page