Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

itk-numerics

ITK is an open-source, cross-platform library that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional scientific images.

This package contains basic numerical tools and algorithms that have general applications outside of imaging.

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI Powered by NumFOCUS

C++ Python
Linux Build Status Build Status
macOS Build Status Build Status
Windows Build Status Build Status
Linux (Code coverage) Build Status

Links

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

The ITK project uses an open governance model and is fiscally sponsored by NumFOCUS. Consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.


ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Supporting ITK

ITK is a fiscally sponsored project of NumFOCUS, a non-profit dedicated to supporting the open source scientific computing community. If you want to support ITK's mission to develop and maintain open-source, reproducible scientific image analysis software for education and research, please consider making a donation to support our efforts.

NumFOCUS is 501(c)(3) non-profit charity in the United States; as such, donations to NumFOCUS are tax-deductible as allowed by law. As with any donation, you should consult with your personal tax adviser or the IRS about your particular tax situation.

Professional Services

Kitware provides professional services for ITK, including custom solution creation, collaborative research and development, development support, and training.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk_numerics-5.3.0-cp311-cp311-win_amd64.whl (20.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

itk_numerics-5.3.0-cp311-cp311-manylinux_2_28_x86_64.whl (58.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

itk_numerics-5.3.0-cp311-cp311-manylinux_2_28_aarch64.whl (55.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

itk_numerics-5.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

itk_numerics-5.3.0-cp311-cp311-macosx_11_0_arm64.whl (34.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

itk_numerics-5.3.0-cp311-cp311-macosx_10_9_x86_64.whl (42.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

itk_numerics-5.3.0-cp310-cp310-win_amd64.whl (20.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

itk_numerics-5.3.0-cp310-cp310-manylinux_2_28_x86_64.whl (58.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

itk_numerics-5.3.0-cp310-cp310-manylinux_2_28_aarch64.whl (55.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

itk_numerics-5.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

itk_numerics-5.3.0-cp310-cp310-macosx_11_0_arm64.whl (34.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

itk_numerics-5.3.0-cp310-cp310-macosx_10_9_x86_64.whl (42.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

itk_numerics-5.3.0-cp39-cp39-win_amd64.whl (20.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

itk_numerics-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (58.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

itk_numerics-5.3.0-cp39-cp39-manylinux_2_28_aarch64.whl (55.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

itk_numerics-5.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

itk_numerics-5.3.0-cp39-cp39-macosx_11_0_arm64.whl (34.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

itk_numerics-5.3.0-cp39-cp39-macosx_10_9_x86_64.whl (42.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

itk_numerics-5.3.0-cp38-cp38-win_amd64.whl (19.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

itk_numerics-5.3.0-cp38-cp38-manylinux_2_28_x86_64.whl (58.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

itk_numerics-5.3.0-cp38-cp38-manylinux_2_28_aarch64.whl (55.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

itk_numerics-5.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

itk_numerics-5.3.0-cp38-cp38-macosx_10_9_x86_64.whl (42.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

itk_numerics-5.3.0-cp37-cp37m-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

itk_numerics-5.3.0-cp37-cp37m-manylinux_2_28_x86_64.whl (58.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

itk_numerics-5.3.0-cp37-cp37m-manylinux_2_28_aarch64.whl (55.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

itk_numerics-5.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

itk_numerics-5.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (42.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file itk_numerics-5.3.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ec683a55a6cebb705407c438b686a885b4529414f12d817510cecb898384be51
MD5 63dea3b516c4b39be264a4cea014433e
BLAKE2b-256 eb925c322687e6106fcf78febb1024344c8ffc90556a4ab186707ccf7b5f7c90

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 daf06148d7392c5a4d8a31c5e3a3267aeb684fc3aecce5a22c72afaf48f2c4af
MD5 ce765acb04d648b71c53ae74f36e3df1
BLAKE2b-256 edf2485e23bc279eccd428bee9db3af14855ca8a7447df4ed4efa62c113538e4

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0225964ec26bbe5d3687a2238ae4f2069dc844c4d6b46723b7937b26402b2c1a
MD5 b2a375578c33706bafb0a321673aae6d
BLAKE2b-256 e4b64a0e3077e309104a40e05372b415c3321ed8c4f772c2d5c7e48496f80a9f

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72da89f1c2d0d076a5accd04c07da0a5e45a1091b90da1b178c44dced7a2661b
MD5 0e763892ca5225b0e2e7feccb590fee4
BLAKE2b-256 199f83005ecdab1afecdf43e914df514abbdec494f8ca4373b0fae896e8b272c

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d69b23e429dd854653ff10bfb9853676305fb8f1e904c8ac6083dbaa7ab2f47c
MD5 f652cfb225961e8ec3384f3c9772d28f
BLAKE2b-256 f75aea6195cffb4841a04c432ed2afbc5a400425655d40c60405acfd848ac8ce

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf35bbfd561df4901d122324c8cb12f2395bbd705f3e6b1bfc84ebe9e00cef12
MD5 a630589438ef7996c5e1f2b49db0e9ed
BLAKE2b-256 106c9b6563ff7ca73902fe80590117d8228ec62c4c97fb68d18ea5388300d59a

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4d1edd278d155857efe85cca2bd02ab5053c71eeeec604eb8394e48edaa7c04c
MD5 6f0bfacb7bd8b203334e77a8fb30537a
BLAKE2b-256 90214dddff553781b3740c8b22f4319ed6d884710ada4fc4c124ce50fdda6a6f

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c857b9ed98c7f88639a2fa6de1872e5ad109804db255e7650c68347a194a7e4f
MD5 6d7ca74b0fc576cefe290265874333ec
BLAKE2b-256 e16401709f8faa9854a68a7274ddef2256c3f1f994db8da1130defbf0c1e483d

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 56a9433bc67b2e9485bc96c601022310c6352b5927dc52cb21ae188905dbfaed
MD5 ab05269b3104e10e6a07a046212a0c15
BLAKE2b-256 cf4516572e5881b46afe329adb2c89f6deb94efe7a2a329346477774382301f2

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2042fc1e16923c875d46181c2ac4ddbb4cbd616019e932e85feaf4be2692800
MD5 504cc6751d71b3cc953ae804d1b414af
BLAKE2b-256 88676e59584b7941cb6a6cab39eecc54808f936749e0a7dbed7a335ef4b3fc8a

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1fbbff8a4d31d01e33a049bb36fcc64f9919a2549a1ef2ad130c88c33821e434
MD5 54214ebed879d0d51d0f6da5ee4f357f
BLAKE2b-256 9efc4b755af463a2d4b914859fb2b64c0f83b604b20bc4b964e2f849a3b15083

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 776a75b0bb67dbf7be6a1281295d942d3835d7fba7e19d13d22de76048712b19
MD5 b7c0a3b06847bdce0aa4a71d49b5f470
BLAKE2b-256 cd8daa403ebc5f398e455a07b86505d14f0386a46aa6c066a240753c2c9b69aa

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 74670ff4030aeb05f8c928e67d28da6991b86361d4777f24d5e907c851ed4ad1
MD5 9ba0a157ec2185c4ff6ca735453a801a
BLAKE2b-256 9023717b39f7206edd97100f57bc04397e7a7a9fa0a2b81ebba2596594513173

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c3a7d36b424dc88ff7b576b79687090187c514423b9418adf1ac6099e1cd70fe
MD5 db0bc0d943a416615832a6f42f9b8e20
BLAKE2b-256 3e843ac25844317f8517c7c131e295a0fc2ae487fa455223170a80b93e3ff972

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 026a6f791a73685db507ec810ae0286817e782bf8d292f150aa7c04639db4212
MD5 f28daddc2acf506f9f9f962bda04ccb8
BLAKE2b-256 98aa7ae85c1fb77abd23f0b26a3230507403a5eb06f61963c7184c0bf45d1a2b

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da05b2bff8528c92c8b1c795de718e261f5f4fec9a9499fa1789cf99b94e2a2e
MD5 7c25d246261b0a74604ca2dd5b922640
BLAKE2b-256 cb180aa785d4a6fda7fb8065674a6cd537288b719e4ab128f0a44900683ff58c

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a97de21e0daf2838c9fbbac11b35580510df340bd4d4c83127c2de89908f5b4e
MD5 8138f32f82dd3e14b7ead7064b626695
BLAKE2b-256 99eb0d1cc22b2839456c89a79f57b976cfda9e895b7e480f1c315d7ad3251d3d

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c35bf9d59ed043d225835d7c01f37366581a4055024742de64124f095e778b62
MD5 534fcf2205ab0e5ee12a1742599be7ec
BLAKE2b-256 37eb9df3ef4fd352fcfba8fa4b81d3d8bd449bd362bc33408d90cb2b53ea8760

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5e04b193b79a0424181e3aad6a35394f16892ce7be692399fc56825055f3422f
MD5 317ce8f2b2d4e72dbfb32e794a96f3ac
BLAKE2b-256 d5f615121c2f4bddd7d867e0dc3e4a320d10530478f4eb77ee2873f11a062b7d

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1422f1f92f1b392927cc7aa0c409a153356728688d221b6d422f2d7f5de00ba0
MD5 dfaf0f3bc7b8dc575e653d0dfc92b473
BLAKE2b-256 4b8031c953e746c4358305f8a4c2f44c98746264ddee0aaeba1e17e96aae2799

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0aaca8ba6630a9475f232929afcb5ebd6925333bfb311d9bc5a4d9a351b9a9bb
MD5 2a7a834355e98d246063e219529e6c7a
BLAKE2b-256 4d4d1ae4f5866c5d1e7d95864f18112e82ce23507dbe27772c150e9a962f8d81

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1af9fc0f8d32cf136b2be82feb5b59c4b1d271ea391b17987a79ed5ce1dce25
MD5 496ca11aa162c81f55221c0916b2fc22
BLAKE2b-256 090bb4e6bb304a0fff323693a536170250f755046d1830f7f906890a86b0864f

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55b11cc7a8756994125cca9b6ddd46706d6cdae74ea91df6151edb26e366179e
MD5 9b793723c32c45ab55c78ae6b83ee973
BLAKE2b-256 b6cacf44996e978155e49b7ac6649a2d8737b887336e9c1aae0f05a49610789f

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 10fb0ba19e2a26ff10d95f61eefc2718ae959c6c3615e23cfc7d7dd2bc20793e
MD5 6d1b20da711d7373d15c444bcfc9c0b3
BLAKE2b-256 16085a1c23683c8bd8991dd0682255a510bf734d0d34e42661e15eb5ea68263b

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a246d445a6bd5163beada710b1bf73d89d7d6ac7a9072b9f777f5e772f5d7533
MD5 cd35280723362687dbe40b286335403f
BLAKE2b-256 4ec425dbe4c780c010f802d470832e2ef62ec4b1ce7cea0cbe1e42b4291b3b00

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 313ccd4aee3cf797c7e2309ee252301dd706638266e4fb1c707357479aef5080
MD5 b98e0f109df6f09c693089922307e2de
BLAKE2b-256 14b82831e9536c001d1050b597fb90374c83ed86820c334575238dbd683006dc

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1223cca8014265edbf1a848f9a5b497a18b1904e3791a24ff8a6c88abe01dd61
MD5 25b4b3e5a561073ace0259db0f809395
BLAKE2b-256 52ab2b9bba628b16350a7f2cf4b6d85d26db6655c89f0d1d342754b9ee3d7d1c

See more details on using hashes here.

File details

Details for the file itk_numerics-5.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_numerics-5.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c7253f4c3eea70162154c5070796633da2f75d1b693f5a239884dccc84643f29
MD5 3d147e73f91d29cd79c99da046778f92
BLAKE2b-256 b7f179434175223128f3685ec6e8d23384e567158cfd33c73e728993308192ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page