Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

itk-segmentation

ITK is an open-source, cross-platform library that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional scientific images.

This package addresses the segmentation problem: partition the image into classified regions (labels). This is a high level package that makes use of many lower level packages.

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI

C++ Python
Linux Build Status Build Status
macOS Build Status Build Status
Windows Build Status Build Status
Linux (Code coverage) Build Status

Links

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk_segmentation-5.1.0.post3-cp38-cp38-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

itk_segmentation-5.1.0.post3-cp38-cp38-macosx_10_9_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

itk_segmentation-5.1.0.post3-cp37-cp37m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

itk_segmentation-5.1.0.post3-cp37-cp37m-macosx_10_9_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

itk_segmentation-5.1.0.post3-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

itk_segmentation-5.1.0.post3-cp36-cp36m-macosx_10_9_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

itk_segmentation-5.1.0.post3-cp35-cp35m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.5m Windows x86-64

itk_segmentation-5.1.0.post3-cp35-cp35m-macosx_10_9_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file itk_segmentation-5.1.0.post3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: itk_segmentation-5.1.0.post3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 915e7752d1bd6d065eb1df0a8c6754dcb91c94e2a3e1a5209c44168791b95b9c
MD5 c3f31830d2c9462fa7f00d89da09343b
BLAKE2b-256 10b68a448d5249c5307628200cdf773427923c5b03497f0c2e7be060590041de

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 887a6d3afa7441079c43f176a743f2b089b036f9f3b7ad0f437df31e036c19e6
MD5 04597b3580e5d5426907da58fce1c5b1
BLAKE2b-256 11c748795c3ed5af95e9c340f56ac751fba5ceec15490033f2de1cb1bf77dfbe

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.1.0.post3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 046c60efa6b0683a64ae179a2849641a9eed57187439ec3eb74faa652f5947be
MD5 964452a0a9db98ebbe97e2e8a1b2d02f
BLAKE2b-256 e41eea6a69a5ad6bc31ba29d76dd62c3d213658920e98ad4066af3eb4e4ddcfb

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: itk_segmentation-5.1.0.post3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8c815d4c172f210a5b4dfc0e82b0a8d3612fdf951f8511d57417265252895461
MD5 c2f067326943104bb44e76d811535d32
BLAKE2b-256 8cf9c11c2e6854c4788d9a8fd0c76540161effbb7b992d7c25fa910bf09417ed

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e2436d39c5e05cac2fc8427232a73d2ae0c38525bf7a4f3a98255c8428b1099b
MD5 321c6fc6c5e04b1fa31fac816ce574b0
BLAKE2b-256 bd7262d1d63f9b699a4b3812964fb30a0d9cc0bcb24714efc08fcd2c8a341c9c

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.1.0.post3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ad8eeededd3d6d64b0194178bc9fab8e802657d95be10c11a2f3c7f41042f30
MD5 7f5ac9acb699d237fd66ebf77970dba9
BLAKE2b-256 c7dca583b8802441493a23a8c150a74048292ee80c34ee4099ba425269298bcc

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: itk_segmentation-5.1.0.post3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a9e116b894ee94ea13355f9d78aee3b466a478ac7e98c84a2dd69b7761130cb7
MD5 447181bdf3938c14d69721b1aa2c717e
BLAKE2b-256 93d50526417b3c9ee4a00bb76ef10b904b5bab9c349fe180797aa051d898079b

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 467b0a01b3636762bcccefecc0a055d7ed4b032e612de35c153c0c04338bcb55
MD5 dc4fb13cc1fa5d7ea1f5a37d469924a0
BLAKE2b-256 e7cc526891767a894c36e33cd60768cb01fbe1a52a5dde649fbe40a64ca30c08

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.1.0.post3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 205a629f164b3f40035625d43fb8a8ec70a32f2e94af36adaee53fe04ea18a01
MD5 b32a63158a956ee48d52fbfa72145f27
BLAKE2b-256 e2be681d1e3a7c276d1e41aee53f91ca42b97171acd5873148bc52f5f9322588

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: itk_segmentation-5.1.0.post3-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 4923397f1f411e6dc47352fca6bc99ff5fb4956131fca5fd85b4657168ce3401
MD5 55bd513f7c80263e67ea49ad3fb83f5d
BLAKE2b-256 ee4d8c28a4c7bc23b54cb19436181565fe10b9a181da331c114a9349c4f07109

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bee092345340959dc21d997cde67b20c39a730906cd9d9518337f49549f5ebee
MD5 01b849ba0051804b5bc364bcc836395f
BLAKE2b-256 2cc2910b53009662276896469df8af4cb65297404b3a723a0ecf24eeeae8dfa3

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.1.0.post3-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.1.0.post3-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.1.0.post3-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ccd8c7d3998c771d7f4820d06c4e4c9de365d58d04b4ac490c2286697d578426
MD5 c9a110b18ad701c04fee06b608f4c24b
BLAKE2b-256 4bff4d7375d1b211170d0892b035a3ab28a86c3ee86a348d3d94b713edc673ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page