Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

itk-segmentation

ITK is an open-source, cross-platform library that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional scientific images.

This package addresses the segmentation problem: partition the image into classified regions (labels). This is a high level package that makes use of many lower level packages.

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI Powered by NumFOCUS

C++ Python
Linux Build Status Build Status
macOS Build Status Build Status
Windows Build Status Build Status
Linux (Code coverage) Build Status

Links

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

The ITK project uses an open governance model and is fiscally sponsored by NumFOCUS. Consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.


ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Supporting ITK

ITK is a fiscally sponsored project of NumFOCUS, a non-profit dedicated to supporting the open source scientific computing community. If you want to support ITK's mission to develop and maintain open-source, reproducible scientific image analysis software for education and research, please consider making a donation to support our efforts.

NumFOCUS is 501(c)(3) non-profit charity in the United States; as such, donations to NumFOCUS are tax-deductible as allowed by law. As with any donation, you should consult with your personal tax adviser or the IRS about your particular tax situation.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk_segmentation-5.2.0.post1-cp39-cp39-win_amd64.whl (5.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

itk_segmentation-5.2.0.post1-cp39-cp39-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

itk_segmentation-5.2.0.post1-cp39-cp39-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

itk_segmentation-5.2.0.post1-cp38-cp38-win_amd64.whl (5.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

itk_segmentation-5.2.0.post1-cp38-cp38-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

itk_segmentation-5.2.0.post1-cp37-cp37m-win_amd64.whl (5.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

itk_segmentation-5.2.0.post1-cp37-cp37m-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

itk_segmentation-5.2.0.post1-cp36-cp36m-win_amd64.whl (5.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

itk_segmentation-5.2.0.post1-cp36-cp36m-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file itk_segmentation-5.2.0.post1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e56d5bd98c2f1135d3c3bb1ac2f462784ca17d04e16a729bffbf2c14d6fd8f1e
MD5 db9597ad18459fa6c7271b5965dc9a97
BLAKE2b-256 ca381f3329872f975deff9de3f9ed8dd3dffd607f7740f7800f98b0e0a4604dd

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39e370a2c54f91b2d0503deaf347824cea7c2263d2356eecad356d6f1f68fc5a
MD5 cd5130f52e4dd209b23398989e22d188
BLAKE2b-256 e94759d47225c4fb0d5bcce0e6b4a2c6783c140a0939cb82713ee8d6be7773f3

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00932d15ee0d52d305b051fb7243b55b28376a92247839ccad14742887d17a69
MD5 9bcb4c6032c7e505a2795de158e7942f
BLAKE2b-256 59035144f9cbe969781f04d0d2b2f7b580a941815859a1c27116c06b4aad344d

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b70acf5ae780e1229ac1d3beda7663cecf5a3f3cc69950f3ea7e72be36073ad
MD5 eac80193378764e1b6890c987e363f56
BLAKE2b-256 7d8e0d3535849da69cf7d930c419da9a4f200c3d3877d537e49b97be28ee2a31

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14e6d5b81af533ba5b420d79bb4f22e1f690e6f8e10dd2f2bfc244ab66672b8e
MD5 35f804959ba51a165102b3d79a4c9d39
BLAKE2b-256 13f3789b9e3ce10d7cdef0e944137cb001605ff1aba6338e941d276af6d50356

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0728a6aaa3d5847586cf72957ec181156754baeeac936fa0865fe722473d338c
MD5 2f01c46e3ca569dbbde58a9e65b313d2
BLAKE2b-256 9ef7b4e4bbc31c3c663eff4b681f97cb98a8eb6932d7e87dbdd5fbcdb976e195

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b79fb59637c7885740f653c1e7bb57f4e5ef8c993e445a6c055ef5bd637c5e8b
MD5 bf58dd72db4e1ff3d61b8f511d98930c
BLAKE2b-256 5773eaa76637eeebc57b34f641832db7275007a9f9a11b504f23b05bdb1766e0

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 90607b2a0608b505957459507d7e74a3b6d35a076e33291787355f552822c0ab
MD5 023e72df698a510227085413a392778d
BLAKE2b-256 1d272836f371aae54c0e96d23c197560388935b24df1a12eef6812cd8b0fa142

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c721c0d6f9b5dd6a05305a52d702620224b287308dccd8f0f38a7f583f0ea351
MD5 e232996275593a7d4eb72c9e99edb9c9
BLAKE2b-256 e4c5f5534ca63530c790e8055f78a4a82be5ccd403e220fc0c761f579aba5c74

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5e4259f64cbe4bb381c58ebb12dad4e9c5c8d411c8d90717990a47bb6fe361df
MD5 d7c3fc7b66e0a20e97b36786d60ea3c7
BLAKE2b-256 fcd2136bfd9e36c504b5078c61fb7719b58fedd2138a031ca766cd1c301d6a72

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4479b3785c152d9eafeef49b09de15121bf9deaa5a35d7ed1447c3f3945c2c2
MD5 19082fc3d456a4bedbc3627e70b9d847
BLAKE2b-256 e5745503067374a7393fa062f7e76e48f6b5e19484889c595e6124c92159d292

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e3551e564744c93d599001a2429050fc1582e2c1a6c6a8a0657f61f8a6a4340d
MD5 a47f07080cbf403bd83077edc603f3f5
BLAKE2b-256 6ee66a26b44977103fa0fe2346e344c7a0fa8fc4579760d6141cd079a983bfa2

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f89d0bf09dc428c5596030850e0c26a49e1f930e4f0db8713ec550811841460d
MD5 a4353c210e31cb90a73cbac9c72c6232
BLAKE2b-256 a64f803758c5d874a4130733c6947847c1f6d2ad888f8adee0a73c8efee7d7c5

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d8244789408c449e49b8aec8c94b62483c1a9e80012f1a089ded904329211ea8
MD5 0cea3a0a17cb855c2bba81213749a27f
BLAKE2b-256 1ab3e4ce24de68f644038a004c44840a4920f572b55b4a471bea759053dce5ba

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5e5fcbec4fe244dd993e910cd67ac615b0cf565f2eca5febe0bad5bca272520
MD5 89f3bfafa3c9a6e4c7208a85a090b282
BLAKE2b-256 52e976cc9189e534c8ebc5e289420705b004375289b3aa21f8eef6d89a8ded4b

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e7b3ed05bba121bbbff84911339a3b8b7f05718a4c3c8fcc071350091cc75e62
MD5 90c16dca79c312e576ee94b7d6eb4a06
BLAKE2b-256 5181e80c4ade577e4c94f01935796527713bcefa2d7a95f1d5f745ee6de779cf

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cfb15b672ea2e46488cdbe9601f1d02c49dd23e99826198b0e15f10127421101
MD5 def3f41d269caaf38327450942f0ca11
BLAKE2b-256 1de8ece6112837321046ee0b5420f4aa6b28a116b449e46fdca5f4a37dedb212

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page