Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

itk-segmentation

ITK is an open-source, cross-platform library that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional scientific images.

This package addresses the segmentation problem: partition the image into classified regions (labels). This is a high level package that makes use of many lower level packages.

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI Powered by NumFOCUS

C++ Python
Linux Build Status Build Status
macOS Build Status Build Status
Windows Build Status Build Status
Linux (Code coverage) Build Status

Links

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

The ITK project uses an open governance model and is fiscally sponsored by NumFOCUS. Consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.


ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Supporting ITK

ITK is a fiscally sponsored project of NumFOCUS, a non-profit dedicated to supporting the open source scientific computing community. If you want to support ITK's mission to develop and maintain open-source, reproducible scientific image analysis software for education and research, please consider making a donation to support our efforts.

NumFOCUS is 501(c)(3) non-profit charity in the United States; as such, donations to NumFOCUS are tax-deductible as allowed by law. As with any donation, you should consult with your personal tax adviser or the IRS about your particular tax situation.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk_segmentation-5.2.0.post3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

itk_segmentation-5.2.0.post3-cp39-cp39-macosx_11_0_arm64.whl (12.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

itk_segmentation-5.2.0.post3-cp39-cp39-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

itk_segmentation-5.2.0.post3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

itk_segmentation-5.2.0.post3-cp38-cp38-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

itk_segmentation-5.2.0.post3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

itk_segmentation-5.2.0.post3-cp37-cp37m-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

itk_segmentation-5.2.0.post3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

itk_segmentation-5.2.0.post3-cp36-cp36m-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file itk_segmentation-5.2.0.post3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bdf175fceae638be55871c25629bae86f0c5a11af7882079c682e2a3cff05c1
MD5 bbec8ac22f9b8c5f49473d339899e1b7
BLAKE2b-256 66d8580779e503987fa00f925879111d4ce2c4bf35187a444551265410f22ccb

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 88616749b827e0757f4b07f9d7167209c3d0370febcc295cc156306ddf0595a7
MD5 a83122e5ca268019afb2a90cac1a4317
BLAKE2b-256 36a656a9fbe3e2218152925863bee9524a5b75d986d812b6c25bc1c4ffd5b972

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post3-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d8227806c6e377f4413f619d40bb488b985d96bed515755669b3619408741e86
MD5 2f6c47b8e17d2ff44a64aabf4640f5d6
BLAKE2b-256 27c0d73ea4ba9e9c0d8453e80e91f52d9ecd05b8d73e33ccdc8ce27be40f0075

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 675fbe8dc71c37744df12c13978c21c609d835bb1fafe67273121d89dd19e299
MD5 dc0820cc4b6c2921911d32f4bbe5932b
BLAKE2b-256 f93ace9b936bde05e978f61a3238c1854ee173a4d3fcb4373b6675b2d8bc8b76

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c98d13b3d55e0faadcbf7a03a5d6c6330ae2a8d98b075ca662176608459fbf34
MD5 35f969df49030963819a764429f653c3
BLAKE2b-256 bcc7253d37c6f048aec2773352a08bfa9d9d3e74384318ae79a645bb0cf8045e

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a38e0df3527b3d723bb878d42e836afae67d9580e3cec085cbe9e6aee00e4eb
MD5 77c6b5ea5c5833bde12686ca0c7ccfda
BLAKE2b-256 ebc39f014c58d12faea7fa9ee74c4a7c0201e845556b30df4661a08af289c121

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1c37870b181bd46becd72741f9dbcde758f256ea1e981276caa30babd123ddc7
MD5 5073b70a757bdaffaded9fe89da979f0
BLAKE2b-256 ca01b1ab061de91c36bf08860ef73bd0434d58993ac0f4055f3e7a35bb724cb9

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f47b4a8df562ee5f59ec8c8ea4af72ca894b0e1693316b0c411559962d66e05
MD5 2c1255f2f1b0904585dd5ed8cb576f29
BLAKE2b-256 f184cf5b01f4e15630e4cd046bfadb9986204afcdda54aca9dfe11537d1c7525

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 06f53bf748127a341340de1d5912b100dad8dafca046d0e8b06fb5c6323e192f
MD5 b4934c77cd01b630903e0aaba6991305
BLAKE2b-256 a6f6932bb65429505ba61ba89e318f0644af2681ba38d1fa68f336851f2e5228

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 edec612461857b3df53e003abe6def10a51bde10deb5683fc6be9134571a2d7e
MD5 e49c6a6a75911b35b861b366f4e7dcc0
BLAKE2b-256 7e55d1647df16a90ea3f82b431bbfc498f47356af8e20b4d979070e7e3d1e19a

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08d395521c9fa855e9a36f7f587d3ca6d77da9147319979b334c6b43c2babe4d
MD5 334b28d67a3086d746ba6974f375b2cb
BLAKE2b-256 95ca93813d1e362145fd9d9d09d28351b45898b20a11d27c2e345c5301ed17b4

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 24484a4730679c2dedc3bc3a40da8d76c4015ecd2285671a5dc26e9d9dfae135
MD5 214821ef9c8f10adacdbc786c7dca2c3
BLAKE2b-256 731ba904d5b6c74ca59a2d6cd556b9e22ca3522114e36750e7a346a8bcba9eb3

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.2.0.post3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: itk_segmentation-5.2.0.post3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.1 CPython/3.7.3

File hashes

Hashes for itk_segmentation-5.2.0.post3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 478e8c7699b1a9160722f790e65c64ddce26c43353c297007c1bfcd7a0394904
MD5 3bd831d13bbcb0c515d54d484b01c166
BLAKE2b-256 283a259d4483038368d3b193997eb0ca6e1bf47adc392903f05ac6a88444b33d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page