Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

itk-segmentation

ITK is an open-source, cross-platform library that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional scientific images.

This package addresses the segmentation problem: partition the image into classified regions (labels). This is a high level package that makes use of many lower level packages.

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI Powered by NumFOCUS

C++ Python
Linux Build Status Build Status
macOS Build Status Build Status
Windows Build Status Build Status
Linux (Code coverage) Build Status

Links

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

The ITK project uses an open governance model and is fiscally sponsored by NumFOCUS. Consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.


ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

If you're a Homebrew user, you can install itk via:

brew install itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Supporting ITK

ITK is a fiscally sponsored project of NumFOCUS, a non-profit dedicated to supporting the open source scientific computing community. If you want to support ITK's mission to develop and maintain open-source, reproducible scientific image analysis software for education and research, please consider making a donation to support our efforts.

NumFOCUS is 501(c)(3) non-profit charity in the United States; as such, donations to NumFOCUS are tax-deductible as allowed by law. As with any donation, you should consult with your personal tax adviser or the IRS about your particular tax situation.

Professional Services

Kitware provides professional services for ITK, including custom solution creation, collaborative research and development, development support, and training.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk_segmentation-5.4rc1-cp311-cp311-win_amd64.whl (5.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

itk_segmentation-5.4rc1-cp311-cp311-manylinux_2_28_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

itk_segmentation-5.4rc1-cp311-cp311-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

itk_segmentation-5.4rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

itk_segmentation-5.4rc1-cp311-cp311-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

itk_segmentation-5.4rc1-cp311-cp311-macosx_10_9_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

itk_segmentation-5.4rc1-cp310-cp310-win_amd64.whl (5.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

itk_segmentation-5.4rc1-cp310-cp310-manylinux_2_28_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

itk_segmentation-5.4rc1-cp310-cp310-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

itk_segmentation-5.4rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

itk_segmentation-5.4rc1-cp310-cp310-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

itk_segmentation-5.4rc1-cp310-cp310-macosx_10_9_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

itk_segmentation-5.4rc1-cp39-cp39-win_amd64.whl (5.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

itk_segmentation-5.4rc1-cp39-cp39-manylinux_2_28_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

itk_segmentation-5.4rc1-cp39-cp39-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

itk_segmentation-5.4rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

itk_segmentation-5.4rc1-cp39-cp39-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

itk_segmentation-5.4rc1-cp39-cp39-macosx_10_9_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

itk_segmentation-5.4rc1-cp38-cp38-win_amd64.whl (5.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

itk_segmentation-5.4rc1-cp38-cp38-manylinux_2_28_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

itk_segmentation-5.4rc1-cp38-cp38-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

itk_segmentation-5.4rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

itk_segmentation-5.4rc1-cp38-cp38-macosx_10_9_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

itk_segmentation-5.4rc1-cp37-cp37m-win_amd64.whl (5.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

itk_segmentation-5.4rc1-cp37-cp37m-manylinux_2_28_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

itk_segmentation-5.4rc1-cp37-cp37m-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

itk_segmentation-5.4rc1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

itk_segmentation-5.4rc1-cp37-cp37m-macosx_10_9_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file itk_segmentation-5.4rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e28c8440b64a21208fab30c882da7e1d8e2f932610bac6add5a51154d5585526
MD5 f8ea4d50225ab611b1d522190d9554c2
BLAKE2b-256 3a70f26decf173c30f549a988939df49820aa0a627061c1c1e66c5c1a895e14f

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c80483ffce38683236b006573c860872349ac20c51900cdcd22120f77b8f0681
MD5 e46ba7a474e2fe893082cd4c4fba2901
BLAKE2b-256 7d7b013eace8c29aa7145c0682d94113659da44b815495626c144946ad7e22f1

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1a58a55b3bd591a3f85c31121ab687164168a916f242f08e3d3ee8ca32c1f900
MD5 d076695754d3ad7bb43328830ec06f6f
BLAKE2b-256 8206810ba5a17b277879b5de726e1a6b258ec1b548cac4dc7f709fff179cf6b3

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f802d72efbec25e33d7df92376a02eebff7a9d239b2cdf0e8fc496de1e864e9f
MD5 8b9ddfdd49fc7903831566410ba9c812
BLAKE2b-256 d11be49fee566493eeb437c764a49da926cd23e1a1a9f34072d6c5660eb09345

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee1a2189eafa1a38fbaaed2d914d096b17cdcbf18b05a1a959974cd57d1d9909
MD5 cbd12d578b5a139b5d991f2f66c38fad
BLAKE2b-256 cccf3f150aaa5c9a10f557030270be9eed296e843e714e0d8141ece152d23366

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e7a0b5d406523fda7bfe0ad66be98ee487a16834627459f51f5bd98b9171760b
MD5 0ad219b44823aaf0c94dc73a318b6a78
BLAKE2b-256 efb82324dd1a3f5c23bdd330c7664e5e6fdbe378de8b77ed8e7c226a6e8b24f1

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aeed810712f70f2bb9cd191e0feeb453fa5ea1371f0bbe6e8ae0dc3cd60ebda6
MD5 f545d9ac87b43fc39c8bc1e5b3a702f2
BLAKE2b-256 70352521001cdb325c71b48b70b48c17429f8465bca43f519b9ab565d518eb98

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ba0cd2cac32868c1558b1f59d73031bed124ad414d696e81f772ae8bd92ac20a
MD5 eb4282d3e04e18c952d5f0635d9450ab
BLAKE2b-256 8344d4e14929db6a93a08db67acfc39c7d9b69a0b1da0d8afe3a84b9d594c6e9

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1bf518ca4f9cb86ffd26cd1261a427a28722297d77b0f34e037295e20273f21c
MD5 507be4e2799e4383adf41b531bc43c7d
BLAKE2b-256 a3176cca67acda9c1d31892bdc74c3803e16a06360b3d6330db9d7046674164b

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4afc417cd913d4d6b80beed0a87bac3b7c2b9c11ba6e80237ce5a9444a3336f4
MD5 6634bf430253374b99a9522c9ae89349
BLAKE2b-256 5509c45ffb92d2456e9442e62ee4e05fd36cad0d19c52a14dddc2323b40ede1a

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0db553b566c595b4846520994c348f3ac2271d4f88225002864b35e6be90a77
MD5 21030961890c1aff896dee235f21d0e8
BLAKE2b-256 8927209e8e79a3b63163768e732177d6e7b488d6dd49c676997af5e3ba708d49

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 411a1e8f3b9199cc1521ff155254aaab72be8324e20a6ddf979fbbb0fed04d11
MD5 483b95032fd996084ad1eb30182bbe84
BLAKE2b-256 86fb0a1476a6dd4668e28ac8f5372ae104dfd798e1ef288a3e0af764a851ab6f

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bbb6431b5d86f576fd4693a38ed5cb23483af64b074da1ef41c0f24d1b45060d
MD5 13ddd60afd535557aba6f3aca189e43d
BLAKE2b-256 5f5b6a6917161008d2356a12b6b152262d8235a4a4ea0a1e156f5e4d6347b003

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d47aea6d4b0e716656d3e9038a067de7f49c9276f3ec706901491e23cad3fa37
MD5 54808d2b5f2bec534a955b043706d0cf
BLAKE2b-256 445c971ebabb4c8a7e2f0b4e9076292f96958ca9b97d86a7bf91d146d30bdffc

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 54fac39c9196385a8e7003a99865a3b3fc18544d7cdcb236652878dad73d3199
MD5 bea8833fe2568564294e761b09a2d271
BLAKE2b-256 fe06eedea97b0294bd8300c259603d9682c3dba6dfd67cc513c520bff1e79177

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2014eedc69948233c4ab562a068ad141ac90fc073bf70b8680d4ab4b782db237
MD5 807f2940b64399fabd86828b2be058ac
BLAKE2b-256 40b17bc7c45fa9ebc9f69aed13e0966d303cc0c0a115f20bea6dbd71dae9256c

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4ae25ac8a1c6083037d58923655d2f14bbfe7b64be2d2ed345205afffe369f4a
MD5 7eda5eb940337b4954af284c0fe3fe6e
BLAKE2b-256 3910ca07331de96d5704de86e6ba23bcc5169cf05c234d7bebcb0c95ae43aeb5

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a359ec95443a4a9f7313b1e341838dd7b49dc1d51f45086e5fe2a9c66d1c49c6
MD5 e5148f774d7fc24b5e8909f9f633cac0
BLAKE2b-256 ebecb653a02d91ecf37f6653f1517d5eb85c250827449eca152c85808cc4ec74

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 48dd11447affa89387ad92dd6c6d7b31e03f3493c15221e6da0fa6095a162540
MD5 fcdd275103fc9b9ecbf006883ac9d0cb
BLAKE2b-256 abf08bcfce6f80a5b321de5cd76ae8002ba2116cc7c93d77a078baf8bfaa2620

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 165f20001746a4048b25315af7ef70a1df240fedd22c53fb21ba8e67fc9535b5
MD5 d127ff337a8d0ef3ba1fe6fba6cb840b
BLAKE2b-256 7038a06e5006bbb8c595c00e91fff548db795b0e77aa8329c16bb22cc19125c9

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 570e528a19dec8ca67b0b163daca6721988bdef94a42240261d5dce827b50672
MD5 ed454dadda78b3cb3e6c633cc5e5eac1
BLAKE2b-256 2c933337a0bc0f14f160e83e8f19926e8b4eae6e10d2dba6474e978b59f991cf

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10bed4ffcc4324281a4ec9e619d683305de4a87e67193be5fb4037cb5844f04f
MD5 eae482c54ad3c0d2b1c8c4e481f3442e
BLAKE2b-256 eb77dba3256da413228f4258da03bc497f94d2c15d96c7c002224cbfa817a28d

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da220ffd23189812d225738b5ad6280e9dee3ea3c0e6ba51f36e1cab1f526d3c
MD5 3261c4249173af0be777b45adaba3574
BLAKE2b-256 2ed89bfe964e807b56bf42332f47cf527d311d2e8f7c643dbdc6bf86ba0efcbf

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 91ea26c2d63a67bd2d36f389e77ad2f971c45c8c4c4d5c9f4d6b01ec22191fdb
MD5 afec10ec6a260d3da5d9c67910cab941
BLAKE2b-256 9181c7cd079a32fe0ba20c170a3d70ffdedd83c264220af57834a5b0de428be4

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f76cd4742d6e52b059ea4df1f4258056ded8d767615173b9fc12e67212f9ae44
MD5 a5151e2c1f6a2158698c91280e3ce5b6
BLAKE2b-256 7e1ea60b7081512fa4f863faf767dd88e1b4eff6fa86c4fe7d2472aa921db04a

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f62234eb82af694581e9298dcc358062cde4d4099dfc345c487ca28feea871ea
MD5 cc7a53c873fe650cd2607a2168ba5518
BLAKE2b-256 67a01ac3b70b7b810d0ea613788495bdc7dd1d8fdb338ae33fdf17752915623b

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a198b1db80ebf5ed9a1faa99bf8bf45622bb0acda90e6e2e387dade05170a2e
MD5 238c788cc177a63b1fc98683d949922f
BLAKE2b-256 c73af13c11a380779d4628d0e62b6bc412c9569c277fba640850775676282f07

See more details on using hashes here.

File details

Details for the file itk_segmentation-5.4rc1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-5.4rc1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 773bd6ef762838f47d002baecda92ebade6c5ca0920fd7f174a0b1264deb303d
MD5 227c0d2dee768126b4a78b344430b058
BLAKE2b-256 716802c3cff3a31cf108913b5c9ea906612c24077b3792d60d30044ee13ecd39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page