Skip to main content

Compute numerical derivatives.

Project description

https://img.shields.io/pypi/v/jacobi https://img.shields.io/badge/github-docs-success https://img.shields.io/badge/github-source-blue

Fast numerical derivatives for real analytic functions with arbitrary round-off error.

Click here for full documentation.

Features

  • Robustly compute the generalised Jacobi matrix for an arbitrary real analytic mapping ℝⁿ → ℝⁱ¹ × … × ℝⁱⁿ

  • Derivative is either computed to specified accuracy (to save computing time) or until maximum precision of function is reached

  • Algorithm based on John D’Errico’s DERIVEST: works even with functions that have large round-off error

  • Up to 1000x faster than numdifftools at equivalent precision

  • Returns error estimates for derivatives

  • Supports arbitrary auxiliary function arguments

  • Perform statistical error propagation based on numerically computed jacobian

  • Lightweight package, only depends on numpy

Planned features

  • Compute the Hessian matrix numerically with the same algorithm

  • Further generalize the calculation to support function arguments with shape (N, K), in that case compute the Jacobi matrix for each of the K vectors of length N

Examples

from matplotlib import pyplot as plt
import numpy as np
from jacobi import jacobi


# function of one variable with auxiliary argument; returns a vector
def f(x):
    return np.sin(x) / x


x = np.linspace(-10, 10, 200)
fx = f(x)

# f(x) is a simple vectorized function, jacobian is diagonal
fdx, fdxe = jacobi(f, x, diagonal=True)
# fdxe is uncertainty estimate for derivative

plt.plot(x, fx, color="k", label="$f(x) = sin(x) / x$")
plt.plot(x, fdx, label="$f'(x)$ computed with jacobi")
scale = 14
plt.fill_between(
    x,
    fdx - fdxe * 10**scale,
    fdx + fdxe * 10**scale,
    label=f"$f'(x)$ error estimate$\\times \\, 10^{{{scale}}}$",
    facecolor="C0",
    alpha=0.5,
)
plt.legend()
https://hdembinski.github.io/jacobi/_images/example.svg
from jacobi import propagate
import numpy as np
from scipy.special import gamma


# arbitrarily complex function that calls compiled libraries, numba-jitted code, etc.
def fn(x):
    r = np.empty(3)
    r[0] = 1.5 * np.exp(-x[0] ** 2)
    r[1] = gamma(x[1] ** 3.1)
    r[2] = np.polyval([1, 2, 3], x[0])
    return r  # x and r have different lengths

# fn accepts a parameter vector x, which has an associated covariance matrix xcov
x = [1.0, 2.0]
xcov = [[1.1, 0.1], [0.1, 2.3]]
y, ycov = propagate(fn, x, xcov)  # y=f(x) and ycov = J xcov J^T

Comparison to numdifftools

Speed

Jacobi makes better use of vectorized computation than numdifftools and converges rapidly if the derivative is trivial. This leads to a dramatic speedup in some cases.

Smaller run-time is better (and ratio > 1).

https://hdembinski.github.io/jacobi/_images/speed.svg

Precision

The machine precision is indicated by the dashed line. Jacobi is comparable in accuracy to numdifftools. The error estimate has the right order of magnitude but slightly underestimates the true deviation. This does not matter for most applications.

https://hdembinski.github.io/jacobi/_images/precision.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jacobi-0.4.2.tar.gz (434.0 kB view details)

Uploaded Source

Built Distribution

jacobi-0.4.2-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file jacobi-0.4.2.tar.gz.

File metadata

  • Download URL: jacobi-0.4.2.tar.gz
  • Upload date:
  • Size: 434.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for jacobi-0.4.2.tar.gz
Algorithm Hash digest
SHA256 09e87dea46914bdb2c52f92aeb6a7d2ac1e4a75c3c9e055025d8d911a6b37993
MD5 e0a04a4f65d915c92e5270210ac47a41
BLAKE2b-256 0f02ed5c3e039182a3a9f032cdd2e8bdaf1a300c8615e0e0e05c4ffce7a4335c

See more details on using hashes here.

File details

Details for the file jacobi-0.4.2-py3-none-any.whl.

File metadata

  • Download URL: jacobi-0.4.2-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for jacobi-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 efe514d621b1974da67c6b3a050ca12b44c15ab71f0e4b8d9b57034fb50ca318
MD5 1616a09c71b41cd63c65486c42100d29
BLAKE2b-256 778a3dd5a3bdf5eb5ef7fd430fd805823421a9892b1993eddf9280b8f835e8c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page