Skip to main content

Approximate and phonetic matching of strings.

Project description

Overview

jellyfish is a library for approximate & phonetic matching of strings.

Source: https://github.com/jamesturk/jellyfish

Documentation: https://jamesturk.github.io/jellyfish/

Issues: https://github.com/jamesturk/jellyfish/issues

PyPI badge Test badge Coveralls Test Rust

Included Algorithms

String comparison:

  • Levenshtein Distance
  • Damerau-Levenshtein Distance
  • Jaro Distance
  • Jaro-Winkler Distance
  • Match Rating Approach Comparison
  • Hamming Distance

Phonetic encoding:

  • American Soundex
  • Metaphone
  • NYSIIS (New York State Identification and Intelligence System)
  • Match Rating Codex

Example Usage

>>> import jellyfish
>>> jellyfish.levenshtein_distance('jellyfish', 'smellyfish')
2
>>> jellyfish.jaro_distance('jellyfish', 'smellyfish')
0.89629629629629637
>>> jellyfish.damerau_levenshtein_distance('jellyfish', 'jellyfihs')
1

>>> jellyfish.metaphone('Jellyfish')
'JLFX'
>>> jellyfish.soundex('Jellyfish')
'J412'
>>> jellyfish.nysiis('Jellyfish')
'JALYF'
>>> jellyfish.match_rating_codex('Jellyfish')
'JLLFSH'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jellyfish-0.11.0.tar.gz (261.7 kB view details)

Uploaded Source

Built Distributions

jellyfish-0.11.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

jellyfish-0.11.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

jellyfish-0.11.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (323.2 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

jellyfish-0.11.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (328.8 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

jellyfish-0.11.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

jellyfish-0.11.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

jellyfish-0.11.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

jellyfish-0.11.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

jellyfish-0.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

jellyfish-0.11.0-cp311-none-win_amd64.whl (207.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

jellyfish-0.11.0-cp311-none-win32.whl (204.1 kB view details)

Uploaded CPython 3.11 Windows x86

jellyfish-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

jellyfish-0.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

jellyfish-0.11.0-cp311-cp311-macosx_11_0_arm64.whl (322.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

jellyfish-0.11.0-cp311-cp311-macosx_10_7_x86_64.whl (327.7 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

jellyfish-0.11.0-cp310-none-win_amd64.whl (207.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

jellyfish-0.11.0-cp310-none-win32.whl (204.1 kB view details)

Uploaded CPython 3.10 Windows x86

jellyfish-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

jellyfish-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

jellyfish-0.11.0-cp310-cp310-macosx_11_0_arm64.whl (322.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

jellyfish-0.11.0-cp310-cp310-macosx_10_7_x86_64.whl (327.7 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

jellyfish-0.11.0-cp39-none-win_amd64.whl (207.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

jellyfish-0.11.0-cp39-none-win32.whl (204.1 kB view details)

Uploaded CPython 3.9 Windows x86

jellyfish-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

jellyfish-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

jellyfish-0.11.0-cp39-cp39-macosx_11_0_arm64.whl (322.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

jellyfish-0.11.0-cp39-cp39-macosx_10_7_x86_64.whl (327.7 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

jellyfish-0.11.0-cp38-none-win_amd64.whl (207.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

jellyfish-0.11.0-cp38-none-win32.whl (204.3 kB view details)

Uploaded CPython 3.8 Windows x86

jellyfish-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

jellyfish-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

jellyfish-0.11.0-cp38-cp38-macosx_11_0_arm64.whl (322.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

jellyfish-0.11.0-cp38-cp38-macosx_10_7_x86_64.whl (328.1 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

jellyfish-0.11.0-cp37-none-win_amd64.whl (207.1 kB view details)

Uploaded CPython 3.7 Windows x86-64

jellyfish-0.11.0-cp37-none-win32.whl (204.3 kB view details)

Uploaded CPython 3.7 Windows x86

jellyfish-0.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

jellyfish-0.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

File details

Details for the file jellyfish-0.11.0.tar.gz.

File metadata

  • Download URL: jellyfish-0.11.0.tar.gz
  • Upload date:
  • Size: 261.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.16

File hashes

Hashes for jellyfish-0.11.0.tar.gz
Algorithm Hash digest
SHA256 9f4f37e3c0ede66685ff3f11ba5e451008879d608f07843cb6a72c91b1415909
MD5 c40c47561575064087ff3ef349afcdaf
BLAKE2b-256 bc33163774ee95bdc398199c822c61feede6599a1b8f8d9af57bd409bed20b75

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34368a436e7a0466494c7b0cda005b090e3b70ade8559ddedf67d380c6b3bef0
MD5 8e3d7fd4e70092283c3c3e1de15c8cdc
BLAKE2b-256 42d50dd10d8a04de189cdd5a169b28bab0c4d4a80c8ccd65693aef592633ed2c

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8595b5cde8ef6aab0a4a727202d59450c9bd8fb9dec20bb18dc14cf6417c1c04
MD5 55f4e2fd4b193485ab23efbedaa0fe0d
BLAKE2b-256 2d12f5e88deced9310e0b2b59b476b7951b94ac46073943b983d7416b66914e4

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8b50691a3cee970ce3d260bdb5381a9b48abe2974b206567ddb1bd7f8ad205bd
MD5 cb13d3491b1458825e5a630973ebfef6
BLAKE2b-256 f6d138396c8643e0ab87a906bf09ee4c4c5f5f3c6092042ce3ca6a15f74b19a0

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e3a9b39eafc424d90c22812098c570f17341fc27300f5ee7c33477c3783c820d
MD5 2276de76f59c01640d880cf2871db45d
BLAKE2b-256 4ad93d04bf190dc9ae4042ec7d459b301e68b322a79d763ed225200717277a3a

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ff00d3d4a53062db535467291a6687ab308983528efd3159e783e07ea83e5c1
MD5 a5925ce68dfef478a1190400d80a93d1
BLAKE2b-256 9610a4acf422d3a8c914a175e8b8fd5d27169b4d245ec31827a8bb5ee00680b7

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82311a872a6c5e8cee304fe13a3b5b506a3648613b466d4add297dbf52cd1bff
MD5 6f7e5a75de0e750f81e1283263e7ce17
BLAKE2b-256 ec976bd02c081160229070a4ea0590f4d375b0a4917207274e98fc33f3eca67d

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70866d8c5a0608d0856827a9c4040f6f0ad2c25d7786f577e0584d83275bfcf9
MD5 0251b0bcb0d4f09f7ce76bd0ac4dfc8c
BLAKE2b-256 1359cb4bc700d782a63db30bc8f22cb45afee0f1207908c6340b237d44844249

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 451e2aea38984a5c474398714fec890dd6d139d51d57a036142f760ef567f730
MD5 6afe83f04731d38227639a0347fc9044
BLAKE2b-256 9a4b7b236d938afa2b8f87d310dce7b0dd901c08638f9db4e360a9d5ea96108a

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 605c0c783b9f3b54b292c551ef17ae216ea393b37d84caa7d767aeb5e1d74708
MD5 e8e6df9be67b64043ee736095990b150
BLAKE2b-256 a36d7ab017ca3d37305073eea725643cca1db9833bbba4b7bea541a789e8b6da

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 213af6860b832823dd520e4a340daaddc85654c77ab9935c5cdd141a551e8384
MD5 526e99e965f4bfe6f5764a35e9873495
BLAKE2b-256 3b68ab86a0caef65652141d623592b7bdfa7879e15179ce16e60fd6ee1620a28

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp311-none-win32.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 5c3889fd2cf23252714fdde96e01b0e8df4d53a9d00a25dd68765332f34a6241
MD5 ded68f5bafadfc94fe418e9d95e20ec7
BLAKE2b-256 2435e8c53d3255256e39f99ff3ca7b37976fc892383f4d6cfe23c19b5ea6661e

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27af92bec28fcb9943fab8a11b75ed1624f35016b6b046e8cd26a274f2784dea
MD5 a080a950cb4574444059e5335db11f74
BLAKE2b-256 315b626f76039115e50d4f0f82c63f2a067a288d4defec56ecb3ba8e63f99b7b

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb8efc6541ce444f04c735d21843750e886bc8a9533d4cec9846463e03073f5d
MD5 816726b2f5fa93b8fa12266359b2105e
BLAKE2b-256 6f49274a0703817431f8a6276b01c3cbbec918bfa475ca0ad425ec635de3f2e7

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2395e2cad38bf56a7a43373d83b029ea45b860220dbb4ebe512c76490e0e6d8d
MD5 3d8e909756fb0dcb79bdba6a3fd9e0c5
BLAKE2b-256 5b987752c7826f8c96670af18102775b28905a5f85a6e5187f417cfd2fa4f5c6

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 08cf289636ecd5f09dd16c3cd152c2990f65e502a2fc95aa5b98972e3a0c0232
MD5 072e985a5c7d2b26c1c760f6ecc6a883
BLAKE2b-256 9bbe144fcadcf867ad4623b556cd8c7d1e4939e225bb13a2f9e9c732b146f797

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 843712cbe7bb933385a783409fb0ef46fce0694a3c1096ddb002fc30fbd21b48
MD5 7e109477f5bcfee4e6cc77d2640fdeda
BLAKE2b-256 d7f1cbaf3c5a3e77d5e6276c731aaa62a8c97e82aa2ed8764f77f8a8f1e4a344

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp310-none-win32.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 a86a6409f21ef2e68376aebda828142cce21d53f7cd455156de28c43f6e1ca7f
MD5 35273eb82a98f326e084c63ab434387b
BLAKE2b-256 1def36f248a944289a8c2ff08e6ca680a8a55c7732b97bb95ea23a5620856003

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea35b097792ddc812b08de9cbf03dbe890e68718ff7ec6766102b150fd179771
MD5 e171273131901b547ced88444cfdfb68
BLAKE2b-256 b64ede529a71a1049460012fa37c3a71a469198bf7b13e352092974cc97c70c6

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a4484478f69b1199e390ab497252c26f4cdbcc0b791a3252a73423f8879130c
MD5 3f9e2bce3dcf5f4d2a0076a09b9f005c
BLAKE2b-256 314e5b2aee14c137271f37b5acbde5dfc1e827ea7826ac4c4cec34966e9a8c9d

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e5945fa55f6b12f789d42365e089ee6ea43e475a1fcf85fe82385e0a1f6a8e0
MD5 653bf2702c1d375be5e0e132d4f05b9b
BLAKE2b-256 18977cb632dc81454050544599c479f52471fdf0ce783f501019c68c669907fa

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 080ce1b3d46b0bc1a790e1ef99b7c642c6695256f2852b12d7761748d3af6032
MD5 7eb9e7fa971712063be1f37b63087f28
BLAKE2b-256 b53d0b4a0fe70ed3d9e4da646edec61824d69503b6023a6593fddc33c45afbd8

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8d5db3a35ba216ec225a53f0ddbf785000ffac468d88dfb08a9ac4146035564c
MD5 29925f5e240f3550815fdec4598746e9
BLAKE2b-256 4cfe35fc6ee5b20b9018de41ebac70d91ad1bdea00b0a373f80f2934fefa44c3

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp39-none-win32.whl.

File metadata

  • Download URL: jellyfish-0.11.0-cp39-none-win32.whl
  • Upload date:
  • Size: 204.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.16

File hashes

Hashes for jellyfish-0.11.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 38849360936d1a382efd730305a392329e49689c4f8d31f026e3a7d4040235d8
MD5 a2b2654101cf8efe59927cc864658d5d
BLAKE2b-256 e209b556c36c7099d252e3f5001529fcb348944d6ac45eeec31e3ae85c5bf3b2

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f11078b140bf79c0d8cef860ae8c1b8f4a2038a0534f6df0789857f1734fd09
MD5 d2728aba3e78a49f32577fab76b30f65
BLAKE2b-256 1c1d2470ddeeb983e8c3e02a3d63455eac9d164e567f6bae86d06c50ecd9c398

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba20808a070dc24267c14daf35a813542afda699ea93a3027cf12c0e9c47b15c
MD5 a20c1b3f85b6729256c6f82be8e69f00
BLAKE2b-256 a418afa545c61c10c379bc3d576361ed13474942ed0e333bc5faad7c378be542

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c42d12c6aeaf46d6a069c2097450181764bae51b8094240925cf253ae2af851f
MD5 fc40aea8f7eaa9e72d5ce8f1a4a3d4ff
BLAKE2b-256 cb9ec7c85eaa3a568cabb480680cdf7e1bd7d7019df22b9611f29266b22bce3b

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a267164d360e18fe440f67951fc625284340446349cda4184a4c8e27148e9f92
MD5 1cc331d1722b2f4b43a9fe8104d84877
BLAKE2b-256 580aaac587c8da7630bce218249134b703b05885953f54c9e0b12e9a31b60888

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 bc2c79a1ec2386d3c0fb39c827b9e5e25783741ecb97ade9d944fe914361754e
MD5 8e3678e59a14e862f96514de88ccefde
BLAKE2b-256 0659ab68491f161272de35adeda886ded6f1ee60fdd5ca5f8a2ffb0cfe46269d

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp38-none-win32.whl.

File metadata

  • Download URL: jellyfish-0.11.0-cp38-none-win32.whl
  • Upload date:
  • Size: 204.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.16

File hashes

Hashes for jellyfish-0.11.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 971f5e213f76e1365e670b8a5696c1c8df983abd3a808266bb8fb2042b1d9ef3
MD5 756c04f272492a555b72c0a75ce34722
BLAKE2b-256 4dc78aa0951626141ee8c748088b86c93c6fb07e79eea8a6f1aa84236d722887

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a21e037141ed5e582639ca89b3478bea4837cc264e7e36532c48658bbe91d971
MD5 d295d6734469e14f97ac6313b5447ad3
BLAKE2b-256 cccea80c3712debe30762ade5f207db3169aeb752f0881d4205b9a4c4a4b4d2e

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f7e05ff207166d4b41df1985b7ef513d024ab3c11908c4d29a9c26c920d3ccdb
MD5 252ad865717bd2d2d1d931eea6ba76bb
BLAKE2b-256 6eabb83007d2a29994c2b0f2e80b9fbf6b07a15c1fd4cf145dc8703fd38ca437

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5721f7c88841ae2d4101a498f123830f5a73c4e61e5f2d3aec0c708aa3b9d825
MD5 c6a2a9aecfa9164efedca76d72f7d147
BLAKE2b-256 1542542abcaf95bbdf876c2aa8aab873a206921923a16ba280698cb937a7961a

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 75efb0d6177db8aab46caab31924282bf9aebf3a96b243aed65f891232ec12bc
MD5 a0b148256efdbcc0868abc5701f004da
BLAKE2b-256 e6cffb85d518127d429ab10142fbcc1ee7f3005d53af97f4699fcc9bf4fb9ba4

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 e1a1557da69b5950dcb30025a4a84e24556fc34e52af3bcd78278291d5453e85
MD5 da7a65fc153e856cbad71833e59839da
BLAKE2b-256 9f550dd17b5513a238a0705c5964e766705547af338b18da65dfda0cde2e259c

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp37-none-win32.whl.

File metadata

  • Download URL: jellyfish-0.11.0-cp37-none-win32.whl
  • Upload date:
  • Size: 204.3 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.14.16

File hashes

Hashes for jellyfish-0.11.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 27fa8fc574114bd715a6f2b9ddaa9d99ec1c32f2a96364175675edccd308d3a1
MD5 ba539e34e17e0bf74fef532f385d2525
BLAKE2b-256 f929755229d71b7801bf2b3c6086f970b592bd6ce2f1cd90ebb773a9db368ae2

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb6c2ce9b674dded838f0732bb50b8d0b7333c40ceafc0e20462a99401d89d59
MD5 04871abc9f6764ef75a9cc5f312ffd90
BLAKE2b-256 4c62396b788e188fa512b6190d0ba7da47e0ddeba84ee2585cfd8898f58453f4

See more details on using hashes here.

File details

Details for the file jellyfish-0.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.11.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 93f59a4ef67436f7c50d486730ddee2e808719e8904987e74a58f8d52e3a8230
MD5 cb627f5709ac7eac29e9e3e2b127f1ba
BLAKE2b-256 9d5dd9c6a8a198e2641f16ba8cc5618121ddbe3600cde26dc7fdd748b7948b49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page