Skip to main content

a library for doing approximate and phonetic matching of strings.

Project description

https://github.com/jamesturk/jellyfish/workflows/Python%20package/badge.svg https://coveralls.io/repos/jamesturk/jellyfish/badge.png?branch=master https://img.shields.io/pypi/v/jellyfish.svg Documentation Status

Jellyfish is a python library for doing approximate and phonetic matching of strings.

Written by James Turk <dev@jamesturk.net> and Michael Stephens.

See https://github.com/jamesturk/jellyfish/graphs/contributors for contributors.

See http://jellyfish.readthedocs.io for documentation.

Source is available at http://github.com/jamesturk/jellyfish.

Jellyfish >= 0.7 only supports Python 3, if you need Python 2 please use 0.6.x.

Included Algorithms

String comparison:

  • Levenshtein Distance

  • Damerau-Levenshtein Distance

  • Jaro Distance

  • Jaro-Winkler Distance

  • Match Rating Approach Comparison

  • Hamming Distance

Phonetic encoding:

  • American Soundex

  • Metaphone

  • NYSIIS (New York State Identification and Intelligence System)

  • Match Rating Codex

Example Usage

>>> import jellyfish
>>> jellyfish.levenshtein_distance(u'jellyfish', u'smellyfish')
2
>>> jellyfish.jaro_distance(u'jellyfish', u'smellyfish')
0.89629629629629637
>>> jellyfish.damerau_levenshtein_distance(u'jellyfish', u'jellyfihs')
1
>>> jellyfish.metaphone(u'Jellyfish')
'JLFX'
>>> jellyfish.soundex(u'Jellyfish')
'J412'
>>> jellyfish.nysiis(u'Jellyfish')
'JALYF'
>>> jellyfish.match_rating_codex(u'Jellyfish')
'JLLFSH'

Running Tests

If you are interested in contributing to Jellyfish, you may want to run tests locally. Jellyfish uses tox to run tests, which you can setup and run as follows:

pip install tox
# cd jellyfish/
tox

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jellyfish-0.8.9.tar.gz (137.3 kB view details)

Uploaded Source

Built Distributions

jellyfish-0.8.9-cp310-cp310-win_amd64.whl (28.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

jellyfish-0.8.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (72.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

jellyfish-0.8.9-cp310-cp310-macosx_10_14_x86_64.whl (24.6 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

jellyfish-0.8.9-cp39-cp39-win_amd64.whl (28.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

jellyfish-0.8.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (72.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

jellyfish-0.8.9-cp39-cp39-macosx_10_14_x86_64.whl (24.6 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

jellyfish-0.8.9-cp38-cp38-win_amd64.whl (28.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

jellyfish-0.8.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (73.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

jellyfish-0.8.9-cp38-cp38-macosx_10_14_x86_64.whl (24.5 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

jellyfish-0.8.9-cp37-cp37m-win_amd64.whl (28.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

jellyfish-0.8.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (72.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

jellyfish-0.8.9-cp37-cp37m-macosx_10_14_x86_64.whl (24.5 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

jellyfish-0.8.9-cp36-cp36m-win_amd64.whl (28.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

jellyfish-0.8.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (72.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

jellyfish-0.8.9-cp36-cp36m-macosx_10_14_x86_64.whl (24.5 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file jellyfish-0.8.9.tar.gz.

File metadata

  • Download URL: jellyfish-0.8.9.tar.gz
  • Upload date:
  • Size: 137.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9.tar.gz
Algorithm Hash digest
SHA256 90d25e8f5971ebbcf56f216ff5bb65d6466572b78908c88c47ab588d4ea436c2
MD5 8ffa7a9bdb4b7c2746277467ea321ea7
BLAKE2b-256 88eec8c7a899960e3a116c0e0cc95aa250fb7269784a472fa590b5ce042cc48a

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: jellyfish-0.8.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b1fd092e60e06115da2f4ab754ba11df7740d5bfe19021c73616b456240315c8
MD5 9f7f10e818fdcfb7694cd8d81c58f416
BLAKE2b-256 2d79c364a8de3e831b02b22a5a205d80f35fa4054477634fb1435e9ca1557581

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.8.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bb4b2e1886f96b5721a1cbf2f2c22e8fe94af9688aec8e29945c11ab8f129a02
MD5 80d4aab5376de417c76182ef70fae80b
BLAKE2b-256 35a4d4a485bb5f5195c0fe729cc942523fe43512889291d363bdb1945a18eceb

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: jellyfish-0.8.9-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 kB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a3b3a31762b8c1286241ddd8a01c61d34df647d805bb5f659b8d6936612265d3
MD5 06ffa2ef576c8b28cecc85945d5c6eab
BLAKE2b-256 afc2a121d2cb9deb8cd452104052adefefbc7aeee59b54ff61e96c5e0760235a

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: jellyfish-0.8.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 28.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 92d69421ed39d4036ea82d7a726300b1e016368cf5f31c3b209887390165d30e
MD5 c00b0ce2834cf27d7f91311ba3e74a01
BLAKE2b-256 0d8dd3464c14036cdfc23b55c8fbd55fe9cfd6ef065ca394ed010ea0d3190b11

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.8.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bb30a07adf110d6f7d03d6bd531b1947134b1517ef45147f1329c9715ab4b9ce
MD5 140f4074d416eb4fc66e0432e0f66b36
BLAKE2b-256 fac36978e13a33bc62d7abd317bda3c5a1fb6727e86bdc0b1f8bca836394a4ec

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: jellyfish-0.8.9-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.6 kB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3ad030b96f7d459daa97da249ca68d74ed261367b58e9af1f02c7bded7ed8e45
MD5 7b1ffbecd3c4442e13a240c5e9d0df00
BLAKE2b-256 ab99c9959e394a093e6e005388603099b0e129dde275b4d129099ff91972cf5a

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: jellyfish-0.8.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9965ebaecba43c709ad4b93cd1e7cb0c0c452d58a339459e0d69c4b57e81f84d
MD5 86610a2aed427987f5c566dd34a16820
BLAKE2b-256 b4830080ae6a42ce189575b565e3b11a15270e00a26cc78bd0d6349d3dfdcc63

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.8.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5997559270da8df1566d3a19cfa89b7585c9da5aa60010bb925247e482c73afe
MD5 c4d7d4ac953ac96242a9ec02458c1d23
BLAKE2b-256 194c5ff408dd2030c68f407dc9fdac49bb1c580e0771807bd1826ecdbf0ca7c0

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: jellyfish-0.8.9-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.5 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f218e8a004d8748f251923019d7979a7f83accc95b3a5f1d656d543b8f5b5291
MD5 ee80cb8baf11193dc8a061ba2c4d26b3
BLAKE2b-256 54632fcc454cbf321fa2fb30a4a949574151390dc9d38cadbedcc2ae4c26dd0e

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: jellyfish-0.8.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a9ba695c97a8c3dc0b08d44503a137a12a2e6ce3cf02d4d77f1831aa4a5f7218
MD5 34f8e2b7b2231eb97aa96650464f7814
BLAKE2b-256 72b77aa20fb0844530691f6821e50d695393888d59374c270773fc3ff9b74d10

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.8.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2340c137a03dd3e64ed3eb5d60b7353c162bed80d7cd8bcb3c5e9053d325d724
MD5 9ec658429650955e77c0380572a6daf4
BLAKE2b-256 96b0901bb311ea58f897874be4983de96274991b8607a4e4c3efa3b8194add45

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: jellyfish-0.8.9-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.5 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 77837d9156d34af8056cbf05818506549da3e585179ec8217ea32d9f5e2ad578
MD5 d5382656ea3e1843784e6630d4ff9d22
BLAKE2b-256 ee96c2aa56efc1b379e4daac310e42727ebc03a90c665ad5f8f54de91338e42a

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: jellyfish-0.8.9-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 beebadb1602ef407b94d9b31914fd7e4e260e6e62e09865276f59cff1278a7e8
MD5 c9ea3ac4debb1e8000984df7c6ee472d
BLAKE2b-256 9ff06eb885d0a58bac0b43220336bc987b51bf68276defe487430d3a0cd4299a

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.8.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9dd016d3731d90231a5f1874a91b05c4fea12de1fba1e7830484b1f30d78de4c
MD5 da2f3b5ed0c8c5d576e4fb8765386a32
BLAKE2b-256 65e1d4c96d47e8ee785ea0fdaa217de949ded1074b0e2d8d1ffdc24628327194

See more details on using hashes here.

File details

Details for the file jellyfish-0.8.9-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: jellyfish-0.8.9-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 24.5 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.8.9-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 13696b496dee907e86bc1966acaa53a85d3ac893221caa9fe020630cb49c0c4d
MD5 16adce07cb42514f9776942af84404d6
BLAKE2b-256 d6b05a21d94e6cad0bf1c631a1aaa447af47b0f54f2b8b3906e970b70b01ac02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page