Skip to main content

a library for doing approximate and phonetic matching of strings.

Project description

Overview

jellyfish is a library for approximate & phonetic matching of strings.

Source: https://github.com/jamesturk/jellyfish

Documentation: https://jamesturk.github.io/jellyfish/

Issues: https://github.com/jamesturk/jellyfish/issues

PyPI badge Test badge Coveralls

Included Algorithms

String comparison:

  • Levenshtein Distance
  • Damerau-Levenshtein Distance
  • Jaro Distance
  • Jaro-Winkler Distance
  • Match Rating Approach Comparison
  • Hamming Distance

Phonetic encoding:

  • American Soundex
  • Metaphone
  • NYSIIS (New York State Identification and Intelligence System)
  • Match Rating Codex

Example Usage

>>> import jellyfish
>>> jellyfish.levenshtein_distance(u'jellyfish', u'smellyfish')
2
>>> jellyfish.jaro_distance(u'jellyfish', u'smellyfish')
0.89629629629629637
>>> jellyfish.damerau_levenshtein_distance(u'jellyfish', u'jellyfihs')
1

>>> jellyfish.metaphone(u'Jellyfish')
'JLFX'
>>> jellyfish.soundex(u'Jellyfish')
'J412'
>>> jellyfish.nysiis(u'Jellyfish')
'JALYF'
>>> jellyfish.match_rating_codex(u'Jellyfish')
'JLLFSH'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jellyfish-0.9.0.tar.gz (132.6 kB view details)

Uploaded Source

Built Distributions

jellyfish-0.9.0-cp311-cp311-win_amd64.whl (23.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

jellyfish-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (51.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

jellyfish-0.9.0-cp311-cp311-macosx_10_9_universal2.whl (31.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

jellyfish-0.9.0-cp310-cp310-win_amd64.whl (26.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

jellyfish-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (75.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

jellyfish-0.9.0-cp310-cp310-macosx_11_0_x86_64.whl (20.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

jellyfish-0.9.0-cp310-cp310-macosx_10_14_x86_64.whl (25.4 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

jellyfish-0.9.0-cp39-cp39-win_amd64.whl (26.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

jellyfish-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (75.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

jellyfish-0.9.0-cp39-cp39-macosx_11_0_x86_64.whl (20.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

jellyfish-0.9.0-cp39-cp39-macosx_10_14_x86_64.whl (25.4 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

jellyfish-0.9.0-cp38-cp38-win_amd64.whl (26.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

jellyfish-0.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (76.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

jellyfish-0.9.0-cp38-cp38-macosx_10_15_x86_64.whl (20.8 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

jellyfish-0.9.0-cp38-cp38-macosx_10_14_x86_64.whl (25.4 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

jellyfish-0.9.0-cp37-cp37m-win_amd64.whl (26.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

jellyfish-0.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (75.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

jellyfish-0.9.0-cp37-cp37m-macosx_10_15_x86_64.whl (20.8 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

jellyfish-0.9.0-cp37-cp37m-macosx_10_14_x86_64.whl (25.4 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file jellyfish-0.9.0.tar.gz.

File metadata

  • Download URL: jellyfish-0.9.0.tar.gz
  • Upload date:
  • Size: 132.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.9.0.tar.gz
Algorithm Hash digest
SHA256 40c9a2ffd8bd3016f7611d424120442f627f56d518a106847dc93f0ead6ad79a
MD5 3c2a9d07102372dc673b1f74970d25b6
BLAKE2b-256 2618cd485f3661c8e8c0ab864c2e54033371dcc1f7e75767318a4044b2808ed4

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6964418daeea9f84760484e410457203e817c9a64473ec19a331fe16af704999
MD5 775f53e17d46053233e0e18d16ad3777
BLAKE2b-256 54e668fd6f60bffab59b033cb946cbe2b8fdbb9dd262f2ea4a05d388c333971e

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aeaa56ec1949553669acb2c35704a73e1954c1e3601a156e3025784baafcba7e
MD5 0e3717ca102d5c83c5619aaf1732806d
BLAKE2b-256 977f66d31b9a79ff278e054d34a30f90d29840347a3a8bec8b09b3df0b437612

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6a02ec72781b53bd28a6fa9ac6f121285c376f7dc9926d024266fed5889c1824
MD5 fe12cedc0c20bb232b98408669e45677
BLAKE2b-256 2fb21d8655cdbddab08ba14f9fe029dade4ddb97c8cad0da0c02a1a5d2701ff3

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: jellyfish-0.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 465a2109e16b87554aec7ddd4ba0c8798f2377f6f957aed30dc64ab46b47e703
MD5 7cd5059d5f70f2d1bb0f093f715f5f0d
BLAKE2b-256 063889947c4f02b46d85f2f9a94f0fb229417aea8ab713de0af078d26f0d381b

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a3b9fae0cba82ef5839d8f2e2275387807ccb6c3041fdc8e89bbcadaf09a5837
MD5 208d230f6c588149b0ab0b0659076b6e
BLAKE2b-256 2df33431aadb83925479090f67d7b7641ea9fc8dae39f49b02d45c201a96d1a1

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 8666649128ba556e9cd361491308ce1da9b38184aac7532003fa37d6307c9985
MD5 de47faee13f2d4f1a165ab3a27e510d7
BLAKE2b-256 6d45a8c1fa43a3da4710fdeb060ead6d684ad16f4ad505c4bf088e57e8cc43cc

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: jellyfish-0.9.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.4 kB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.9.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c0cbe9d294f75b4fa05c0a5cb7ca4c8e85297a3ec9bf66d13ed330190a86381f
MD5 4c0de037060cad685f09ac0a27d633d0
BLAKE2b-256 047f5ff8a7ddd6b463167ed4c72e51acbf5bca843626f996bab45c784add0eb5

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: jellyfish-0.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8759c6d34f1bea5860ab5807968399b9dd259c703f6c5071fcd5703bf7a00d99
MD5 cfa065d1abf38622342c7e0f858078d0
BLAKE2b-256 054da7c34d2a4e112c11a383337176c9a2f8e3ca0185d58af6143d6b7e837670

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 954290c165511681aa9627e3c4305acf425942ad64e745ea56865cff8e0661a6
MD5 9405d86f41e606c631ad0b5bc96c01dd
BLAKE2b-256 ca7f2c981f460956a2c6640efeefb27f033c5a0b54666addc405104ccad9db9f

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 02b2e7952067f8dda804f35f226723f4e466e43dbe7c5060ce02d2e056711f23
MD5 ef5322fce093161364fa71a6b348744b
BLAKE2b-256 d08f4bd432b44f81eeb43d9be968aa0975d857bf7f0db1a01802e4d4fa3974cf

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: jellyfish-0.9.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.4 kB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.9.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b682a6235d581669e6a9f0a6d716a6606bf42525ab90de4c6a49c36bfbdd73b4
MD5 ba39d13cd43d4aba6bd9a34e127a8f05
BLAKE2b-256 31555bff6d98b9a1961cf3bf8a3dc3dbd17c1eb62508dd8316ef608d6823e196

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: jellyfish-0.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 514c9d9e69170ac2c3eff48ba02d4f03540538d63028b76ebc8a2cb589e8cdd0
MD5 a28810ec669835884c8a7f230e755051
BLAKE2b-256 f84058083feb795bfabb3231b86988e65d161f4f02738b1cc910f5220bcb3ecf

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3b6ffe2ab3d557892db1f87bb4846dfb7a697eba9248d6f2554555f998f4a265
MD5 f736b89256034b45839b7e2fc66266e8
BLAKE2b-256 59a02b1f7e295a50f359e510516aeadfec630a684ebd3d47e1e9f6c8aa2d139e

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 03c50e577a1b5a612f1a31fab92642ea5067397bfba68da78773777e93e5acd0
MD5 50c19adfdefa86706a2698771361020f
BLAKE2b-256 83ea8d33a44be847e709092a347212b83ea9377365ccbf8d6fd60f6ef413aa53

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: jellyfish-0.9.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.4 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.9.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cc68f01450290d5ad631f63917834788c178eebaa6efb8196319eea2f146ed70
MD5 e767e2dd82ace721d7d0fa91de5ff931
BLAKE2b-256 5471186405ae3ee50abc6116092dbfe22872cdc4a0627e7ebf072492727161a4

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: jellyfish-0.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c891c1465679bc9c2d114f75364e3b4dadeb6959a37c3e3fa41bc7746a84e060
MD5 29fcde592a88dd329919f639dc09959e
BLAKE2b-256 93268784c7cd5e056a0f469d8cdfa0d61b58f3143ae40a24ed47f8efe9840f2e

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96290b1e1acb30b2466112ba4ed9c7b511ac7028d7e9096b38558ea1f0484a98
MD5 779fd7dd9d07d393f78da7fae14d44f9
BLAKE2b-256 c4e5e713eb8ca04d395408e188f01b9a74748916e12860b8abb72527dc9a3578

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for jellyfish-0.9.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ae2dd58c6027d2c7b8a7be5ce56e98cfc6c40043d314ae385e912e8ace4f4124
MD5 a5e87f6aaf879897538d871faa0ca2a7
BLAKE2b-256 463e091dca57044aa511c977250bb1470a7ec9a891c4dbd657aa46a4822ca371

See more details on using hashes here.

File details

Details for the file jellyfish-0.9.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: jellyfish-0.9.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 25.4 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for jellyfish-0.9.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 35eefbbfb93aa82a4a4e5eafc3b866c3ac26418f064c4538c345b11cdebf2b5b
MD5 4a55f1e8faaed926a6c1af2b0f701508
BLAKE2b-256 5db05370fb3d93fdcfd1d322b77feaabde2670e9696ba8d03d02daf0abf723df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page