Extending the python json package functionality
Project description
JSON Extended
A module to extend the python json package functionality:
- Treat a directory structure like a nested dictionary:
- lightweight plugin system: define bespoke classes for parsing different file extensions (in-the-box: .json, .csv, .hdf5) and encoding/decoding objects
- lazy loading: read files only when they are indexed into
- tab completion: index as tabs for quick exploration of data
- Manipulation of nested dictionaries:
- enhanced pretty printer
- Javascript rendered, expandable tree in the Jupyter Notebook
- functions including; filter, merge, flatten, unflatten, diff
- output to directory structure (of n folder levels)
- On-disk indexing option for large json files (using the ijson package)
- Units schema concept to apply and convert physical units (using the pint package)
Documentation: https://jsonextended.readthedocs.io
Contents
Installation
From Conda (recommended):
conda install -c conda-forge jsonextended
From PyPi:
pip install jsonextended
jsonextended has no import dependancies, on Python 3.x and only
pathlib2
on 2.7 but, for full functionallity, it is advised to install
the following packages:
conda install -c conda-forge ijson numpy pint h5py pandas
Basic Example
from jsonextended import edict, plugins, example_mockpaths
Take a directory structure, potentially containing multiple file types:
datadir = example_mockpaths.directory1
print(datadir.to_string(indentlvl=3,file_content=True))
Folder("dir1")
File("file1.json") Contents:
{"key2": {"key3": 4, "key4": 5}, "key1": [1, 2, 3]}
Folder("subdir1")
File("file1.csv") Contents:
# a csv file
header1,header2,header3
val1,val2,val3
val4,val5,val6
val7,val8,val9
File("file1.literal.csv") Contents:
# a csv file with numbers
header1,header2,header3
1,1.1,string1
2,2.2,string2
3,3.3,string3
Folder("subdir2")
Folder("subsubdir21")
File("file1.keypair") Contents:
# a key-pair file
key1 val1
key2 val2
key3 val3
key4 val4
Plugins can be defined for parsing each file type (see Creating Plugins section):
plugins.load_builtin_plugins('parsers')
plugins.view_plugins('parsers')
{'csv.basic': 'read *.csv delimited file with headers to {header:[column_values]}',
'csv.literal': 'read *.literal.csv delimited files with headers to {header:column_values}, with number strings converted to int/float',
'hdf5.read': 'read *.hdf5 (in read mode) files using h5py',
'json.basic': 'read *.json files using json.load',
'keypair': "read *.keypair, where each line should be; '<key> <pair>'"}
LazyLoad then takes a path name, path-like object or dict-like object, which will lazily load each file with a compatible plugin.
lazy = edict.LazyLoad(datadir)
lazy
{file1.json:..,subdir1:..,subdir2:..}
Lazyload can then be treated like a dictionary, or indexed by tab completion:
list(lazy.keys())
['subdir1', 'subdir2', 'file1.json']
lazy[['file1.json','key1']]
[1, 2, 3]
lazy.subdir1.file1_literal_csv.header2
[1.1, 2.2, 3.3]
For pretty printing of the dictionary:
edict.pprint(lazy,depth=2)
file1.json:
key1: [1, 2, 3]
key2: {...}
subdir1:
file1.csv: {...}
file1.literal.csv: {...}
subdir2:
subsubdir21: {...}
Numerous functions exist to manipulate the nested dictionary:
edict.flatten(lazy.subdir1)
{('file1.csv', 'header1'): ['val1', 'val4', 'val7'],
('file1.csv', 'header2'): ['val2', 'val5', 'val8'],
('file1.csv', 'header3'): ['val3', 'val6', 'val9'],
('file1.literal.csv', 'header1'): [1, 2, 3],
('file1.literal.csv', 'header2'): [1.1, 2.2, 3.3],
('file1.literal.csv', 'header3'): ['string1', 'string2', 'string3']}
LazyLoad parses the plugins.decode
function to parser plugin's
read_file
method (keyword 'object_hook'). Therefore, bespoke decoder
plugins can be set up for specific dictionary key signatures:
print(example_mockpaths.jsonfile2.to_string())
File("file2.json") Contents:
{"key1":{"_python_set_": [1, 2, 3]},"key2":{"_numpy_ndarray_": {"dtype": "int64", "value": [1, 2, 3]}}}
edict.LazyLoad(example_mockpaths.jsonfile2).to_dict()
{u'key1': {u'_python_set_': [1, 2, 3]},
u'key2': {u'_numpy_ndarray_': {u'dtype': u'int64', u'value': [1, 2, 3]}}}
plugins.load_builtin_plugins('decoders')
plugins.view_plugins('decoders')
{'decimal.Decimal': 'encode/decode Decimal type',
'numpy.ndarray': 'encode/decode numpy.ndarray',
'pint.Quantity': 'encode/decode pint.Quantity object',
'python.set': 'decode/encode python set'}
dct = edict.LazyLoad(example_mockpaths.jsonfile2).to_dict()
dct
{u'key1': {1, 2, 3}, u'key2': array([1, 2, 3])}
This process can be reversed, using encoder plugins:
plugins.load_builtin_plugins('encoders')
plugins.view_plugins('encoders')
{'decimal.Decimal': 'encode/decode Decimal type',
'numpy.ndarray': 'encode/decode numpy.ndarray',
'pint.Quantity': 'encode/decode pint.Quantity object',
'python.set': 'decode/encode python set'}
import json
json.dumps(dct,default=plugins.encode)
'{"key2": {"_numpy_ndarray_": {"dtype": "int64", "value": [1, 2, 3]}}, "key1": {"_python_set_": [1, 2, 3]}}'
Creating and Loading Plugins
from jsonextended import plugins, utils
Plugins are recognised as classes with a minimal set of attributes matching the plugin category interface:
plugins.view_interfaces()
{'decoders': ['plugin_name', 'plugin_descript', 'dict_signature'],
'encoders': ['plugin_name', 'plugin_descript', 'objclass'],
'parsers': ['plugin_name', 'plugin_descript', 'file_regex', 'read_file']}
plugins.unload_all_plugins()
plugins.view_plugins()
{'decoders': {}, 'encoders': {}, 'parsers': {}}
For example, a simple parser plugin would be:
class ParserPlugin(object):
plugin_name = 'example'
plugin_descript = 'a parser for *.example files, that outputs (line_number:line)'
file_regex = '*.example'
def read_file(self, file_obj, **kwargs):
out_dict = {}
for i, line in enumerate(file_obj):
out_dict[i] = line.strip()
return out_dict
Plugins can be loaded as a class:
plugins.load_plugin_classes([ParserPlugin],'parsers')
plugins.view_plugins()
{'decoders': {},
'encoders': {},
'parsers': {'example': 'a parser for *.example files, that outputs (line_number:line)'}}
Or by directory (loading all .py files):
fobj = utils.MockPath('example.py',is_file=True,content="""
class ParserPlugin(object):
plugin_name = 'example.other'
plugin_descript = 'a parser for *.example.other files, that outputs (line_number:line)'
file_regex = '*.example.other'
def read_file(self, file_obj, **kwargs):
out_dict = {}
for i, line in enumerate(file_obj):
out_dict[i] = line.strip()
return out_dict
""")
dobj = utils.MockPath(structure=[fobj])
plugins.load_plugins_dir(dobj,'parsers')
plugins.view_plugins()
{'decoders': {},
'encoders': {},
'parsers': {'example': 'a parser for *.example files, that outputs (line_number:line)',
'example.other': 'a parser for *.example.other files, that outputs (line_number:line)'}}
For a more complex example of a parser, see
jsonextended.complex_parsers
Interface specifications
- Parsers:
- file_regex attribute, a str denoting what files to apply it to. A file will be parsed by the longest regex it matches.
- read_file method, which takes an (open) file object and kwargs as parameters
- Decoders:
- dict_signature attribute, a tuple denoting the keys which the
dictionary must have, e.g. dict_signature=('a','b') decodes
{'a':1,'b':2}
- from_... method(s), which takes a dict object as parameter.
The
plugins.decode
function will use the method denoted by the intype parameter, e.g. if intype='json', thenfrom_json
will be called.
- dict_signature attribute, a tuple denoting the keys which the
dictionary must have, e.g. dict_signature=('a','b') decodes
- Encoders:
- objclass attribute, the object class to apply the encoding to, e.g. objclass=decimal.Decimal encodes objects of that type
- to_... method(s), which takes a dict object as parameter. The
plugins.encode
function will use the method denoted by the outtype parameter, e.g. if outtype='json', thento_json
will be called.
Extended Examples
For more information, all functions contain doc-strings with tested examples.
Data Folders JSONisation
from jsonextended import ejson, edict, utils
path = utils.get_test_path()
ejson.jkeys(path)
['dir1', 'dir2', 'dir3']
jdict1 = ejson.to_dict(path)
edict.pprint(jdict1,depth=2)
dir1:
dir1_1: {...}
file1: {...}
file2: {...}
dir2:
file1: {...}
dir3:
edict.to_html(jdict1,depth=2)
To try the rendered JSON tree, output in the Jupyter Notebook, go to : https://chrisjsewell.github.io/
Nested Dictionary Manipulation
jdict2 = ejson.to_dict(path,['dir1','file1'])
edict.pprint(jdict2,depth=1)
initial: {...}
meta: {...}
optimised: {...}
units: {...}
filtered = edict.filter_keys(jdict2,['vol*'],use_wildcards=True)
edict.pprint(filtered)
initial:
crystallographic:
volume: 924.62752781
primitive:
volume: 462.313764
optimised:
crystallographic:
volume: 1063.98960509
primitive:
volume: 531.994803
edict.pprint(edict.flatten(filtered))
(initial, crystallographic, volume): 924.62752781
(initial, primitive, volume): 462.313764
(optimised, crystallographic, volume): 1063.98960509
(optimised, primitive, volume): 531.994803
Units Schema
from jsonextended.units import apply_unitschema, split_quantities
withunits = apply_unitschema(filtered,{'volume':'angstrom^3'})
edict.pprint(withunits)
initial:
crystallographic:
volume: 924.62752781 angstrom ** 3
primitive:
volume: 462.313764 angstrom ** 3
optimised:
crystallographic:
volume: 1063.98960509 angstrom ** 3
primitive:
volume: 531.994803 angstrom ** 3
newunits = apply_unitschema(withunits,{'volume':'nm^3'})
edict.pprint(newunits)
initial:
crystallographic:
volume: 0.92462752781 nanometer ** 3
primitive:
volume: 0.462313764 nanometer ** 3
optimised:
crystallographic:
volume: 1.06398960509 nanometer ** 3
primitive:
volume: 0.531994803 nanometer ** 3
edict.pprint(split_quantities(newunits),depth=4)
initial:
crystallographic:
volume:
magnitude: 0.92462752781
units: nanometer ** 3
primitive:
volume:
magnitude: 0.462313764
units: nanometer ** 3
optimised:
crystallographic:
volume:
magnitude: 1.06398960509
units: nanometer ** 3
primitive:
volume:
magnitude: 0.531994803
units: nanometer ** 3
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file jsonextended-0.7.11.tar.gz
.
File metadata
- Download URL: jsonextended-0.7.11.tar.gz
- Upload date:
- Size: 430.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8044ddc359c8ff91b5b3183be33822131bfddf85ddcc2fd91640029b2c51464a |
|
MD5 | f337a765dbaa6d64c0a7b842e60b676d |
|
BLAKE2b-256 | 9a0b423feb7f13c1b1f15f9ef89c078c40a33799d56ead6465c962457a863590 |
File details
Details for the file jsonextended-0.7.11-py2.py3-none-any.whl
.
File metadata
- Download URL: jsonextended-0.7.11-py2.py3-none-any.whl
- Upload date:
- Size: 466.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4d8d7099af352156ad6babe9633225329183ca7a81f9d93bb55238a5f312bbe |
|
MD5 | d11c83914f9bf3493bfd3cf7c2d4e0be |
|
BLAKE2b-256 | 7baae084e46ed3a7aab0b910790ca82f496e71dc5a2b7cc64793ee54f5d8bbd3 |