Skip to main content

Models to make easier to deal with structures that are converted to, or read from JSON.

Project description

https://badge.fury.io/py/jsonmodels.png https://travis-ci.org/beregond/jsonmodels.png?branch=master https://pypip.in/d/jsonmodels/badge.png

Models to make easier to deal with structures that are converted to, or read from JSON.

Features

  • Fully tested with Python 2.7, 3.3, 3.4 and PyPy.

  • Create Django-like models:

from jsonmodels import models, fields, error, validators


class Cat(models.Base):

    name = fields.StringField(required=True)
    breed = fields.StringField()


class Dog(models.Base):

    name = fields.StringField(required=True)
    age = fields.IntField()


class Car(models.Base):

    registration_number = fields.StringField(required=True)
    engine_capacity = fields.FloatField()
    color = fields.StringField()


class Person(models.Base):

    name = fields.StringField(required=True)
    surname = fields.StringField(required=True)
    car = fields.EmbeddedField(Car)
    pets = fields.ListField([Cat, Dog])
  • Access to values through attributes:

>>> cat = Cat()
>>> cat.populate(name='Garfield')
>>> cat.name
'Garfield'
>>> cat.breed = 'mongrel'
>>> cat.breed
'mongrel'
  • Validate models:

>>> person = Person(name='Chuck', surname='Norris')
>>> person.validate()
None

>>> dog = Dog()
>>> dog.validate()
*** ValidationError: Field "name" is required!
  • Cast models to python struct and JSON:

>>> cat = Cat(name='Garfield')
>>> dog = Dog(name='Dogmeat', age=9)
>>> car = Car(registration_number='ASDF 777', color='red')
>>> person = Person(name='Johny', surname='Bravo', pets=[cat, dog])
>>> person.car = car
>>> person.to_struct()
{
    'car': {
        'color': 'red',
        'registration_number': 'ASDF 777'
    },
    'surname': 'Bravo',
    'name': 'Johny',
    'pets': [
        {'name': 'Garfield'},
        {'age': 9, 'name': 'Dogmeat'}
    ]
}

>>> import json
>>> person_json = json.dumps(person.to_struct())
  • You don’t like to write JSON Schema? Let jsonmodels do it for you:

>>> person = Person()
>>> person.to_json_schema()
{
    'additionalProperties': False,
    'required': ['surname', 'name'],
    'type': 'object',
    'properties': {
        'car': {
            'additionalProperties': False,
            'required': ['registration_number'],
            'type': 'object',
            'properties': {
                'color': {'type': 'string'},
                'engine_capacity': {'type': 'float'},
                'registration_number': {'type': 'string'}
            }
        },
        'surname': {'type': 'string'},
        'name': {'type': 'string'},
        'pets': {
            'items': {
                'oneOf': [
                    {
                        'additionalProperties': False,
                        'required': ['name'],
                        'type': 'object',
                        'properties': {
                            'breed': {'type': 'string'},
                            'name': {'type': 'string'}
                        }
                    },
                    {
                        'additionalProperties': False,
                        'required': ['name'],
                        'type': 'object',
                        'properties': {
                            'age': {'type': 'integer'},
                            'name': {'type': 'string'}
                        }
                    }
                ]
            },
            'type': 'list'
        }
    }
}
  • Validate models and use validators, that affect generated schema:

>>> class Person(models.Base):
...
...     name = fields.StringField(
...         required=True,
...         validators=[
...             validators.Regex('^[A-Za-z]+$'),
...             validators.Length(3, 25),
...         ],
...     )
...     age = fields.IntField(
...         required=True,
...         validators=[
...             validators.Min(18),
...             validators.Max(101),
...         ]
...     )

>>> person = Person()
>>> person.age = 11
>>> person.validate()
*** ValidationError: '11' is lower than minimum ('18').

>>> person.age = 19
>>> person.name = 'Scott_'
>>> person.validate()
*** ValidationError: Value "Scott_" did not match pattern "^[A-Za-z]+$".

>>> person.name = 'Scott'
>>> person.validate()
None

>>> person.to_json_schema()
{
    "additionalProperties": false,
    "properties": {
        "age": {
            "maximum": 101,
            "minimum": 18,
            "type": "integer"
        },
        "name": {
            "maxLength": 25,
            "minLength": 3,
            "pattern": "/^[A-Za-z]+$/",
            "type": "string"
        }
    },
    "required": [
        "age",
        "name"
    ],
    "type": "object"
}

For more information, please see topic about validation in documentation.

  • Compare JSON schemas:

>>> from jsonmodels.utils import compare_schemas
>>> schema1 = {'type': 'object'}
>>> schema2 = {'type': 'list'}
>>> compare_schemas(schema1, schema1)
True
>>> compare_schemas(schema1, schema2)
False

More

For more examples and better description see full documentation: http://jsonmodels.rtfd.org.

History

1.4 (2014-07-22)

  • Allowed validators to modify generated schema.

  • Added validator for maximum value.

  • Added utils to convert regexes between Python and ECMA formats.

  • Added validator for regex.

  • Added validator for minimum value.

  • By default “validators” of field are empty list.

1.3.1 (2014-07-13)

  • Fixed generation of schema for BoolField.

1.3 (2014-07-13)

  • Added new fields (BoolField, TimeField, DateField and DateTimeField).

  • ListField is always not required.

  • Schema can be now generated from class itself (not from an instance).

1.2 (2014-06-18)

  • Fixed values population, when value is not dictionary.

  • Added custom validators.

  • Added tool for schema comparison.

1.1.1 (2014-06-07)

  • Added possibility to populate already initialized data to EmbeddedField.

  • Added compare_schemas utility.

1.1 (2014-05-19)

  • Added docs.

  • Added json schema generation.

  • Added tests for PEP8 and complexity.

  • Moved to Python 3.4.

  • Added PEP257 compatibility.

  • Added help text to fields.

1.0.5 (2014-04-14)

  • Added data transformers.

1.0.4 (2014-04-13)

  • List field now supports simple types.

1.0.3 (2014-04-10)

  • Fixed compatibility with Python 3.

  • Fixed str and repr methods.

1.0.2 (2014-04-03)

  • Added deep data initialization.

1.0.1 (2014-04-03)

  • Added populate method.

1.0 (2014-04-02)

  • First stable release on PyPI.

0.1.0 (2014-03-17)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsonmodels-1.4.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

jsonmodels-1.4-py2.py3-none-any.whl (14.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file jsonmodels-1.4.tar.gz.

File metadata

  • Download URL: jsonmodels-1.4.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for jsonmodels-1.4.tar.gz
Algorithm Hash digest
SHA256 292f9e616480e03cd23383838b1f6c1ba27cda240c3565a2d885829a2d187a0e
MD5 11a942c90117f3aca2c841d619646fb3
BLAKE2b-256 0b08395313947801830ec4fcad5ec05ba01ec306dd2980f9d152d60992bb5df5

See more details on using hashes here.

File details

Details for the file jsonmodels-1.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for jsonmodels-1.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 121a66e136c56fdd477df01b7cc25e2848db82b5634ccd7b63f0fc50b956e80c
MD5 740a3834a296d550c8c02e927106ac39
BLAKE2b-256 e3d4e4d6b965d610e47838b9276f4ac4701a879c0d7157d8d9ad5a253f6b7657

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page