Skip to main content

Models to make easier to deal with structures that are converted to, or read from JSON.

Project description

https://badge.fury.io/py/jsonmodels.png https://travis-ci.org/beregond/jsonmodels.png?branch=master https://img.shields.io/pypi/dm/jsonmodels.svg https://coveralls.io/repos/beregond/jsonmodels/badge.png

jsonmodels is library to make it easier for you to deal with structures that are converted to, or read from JSON.

Features

  • Fully tested with Python 2.7, 3.3, 3.4 and PyPy.

  • Create Django-like models:

    from jsonmodels import models, fields, errors, validators
    
    
    class Cat(models.Base):
    
        name = fields.StringField(required=True)
        breed = fields.StringField()
    
    
    class Dog(models.Base):
    
        name = fields.StringField(required=True)
        age = fields.IntField()
    
    
    class Car(models.Base):
    
        registration_number = fields.StringField(required=True)
        engine_capacity = fields.FloatField()
        color = fields.StringField()
    
    
    class Person(models.Base):
    
        name = fields.StringField(required=True)
        surname = fields.StringField(required=True)
        car = fields.EmbeddedField(Car)
        pets = fields.ListField([Cat, Dog])
  • Access to values through attributes:

    >>> cat = Cat()
    >>> cat.populate(name='Garfield')
    >>> cat.name
    'Garfield'
    >>> cat.breed = 'mongrel'
    >>> cat.breed
    'mongrel'
  • Validate models:

    >>> person = Person(name='Chuck', surname='Norris')
    >>> person.validate()
    None
    
    >>> dog = Dog()
    >>> dog.validate()
    *** ValidationError: Field "name" is required!
  • Cast models to python struct and JSON:

    >>> cat = Cat(name='Garfield')
    >>> dog = Dog(name='Dogmeat', age=9)
    >>> car = Car(registration_number='ASDF 777', color='red')
    >>> person = Person(name='Johny', surname='Bravo', pets=[cat, dog])
    >>> person.car = car
    >>> person.to_struct()
    {
        'car': {
            'color': 'red',
            'registration_number': 'ASDF 777'
        },
        'surname': 'Bravo',
        'name': 'Johny',
        'pets': [
            {'name': 'Garfield'},
            {'age': 9, 'name': 'Dogmeat'}
        ]
    }
    
    >>> import json
    >>> person_json = json.dumps(person.to_struct())
  • You don’t like to write JSON Schema? Let jsonmodels do it for you:

    >>> person = Person()
    >>> person.to_json_schema()
    {
        'additionalProperties': False,
        'required': ['surname', 'name'],
        'type': 'object',
        'properties': {
            'car': {
                'additionalProperties': False,
                'required': ['registration_number'],
                'type': 'object',
                'properties': {
                    'color': {'type': 'string'},
                    'engine_capacity': {'type': 'float'},
                    'registration_number': {'type': 'string'}
                }
            },
            'surname': {'type': 'string'},
            'name': {'type': 'string'},
            'pets': {
                'items': {
                    'oneOf': [
                        {
                            'additionalProperties': False,
                            'required': ['name'],
                            'type': 'object',
                            'properties': {
                                'breed': {'type': 'string'},
                                'name': {'type': 'string'}
                            }
                        },
                        {
                            'additionalProperties': False,
                            'required': ['name'],
                            'type': 'object',
                            'properties': {
                                'age': {'type': 'integer'},
                                'name': {'type': 'string'}
                            }
                        }
                    ]
                },
                'type': 'list'
            }
        }
    }
  • Validate models and use validators, that affect generated schema:

    >>> class Person(models.Base):
    ...
    ...     name = fields.StringField(
    ...         required=True,
    ...         validators=[
    ...             validators.Regex('^[A-Za-z]+$'),
    ...             validators.Length(3, 25),
    ...         ],
    ...     )
    ...     age = fields.IntField(
    ...         required=True,
    ...         validators=[
    ...             validators.Min(18),
    ...             validators.Max(101),
    ...         ]
    ...     )
    
    >>> person = Person()
    >>> person.age = 11
    >>> person.validate()
    *** ValidationError: '11' is lower than minimum ('18').
    
    >>> person.age = 19
    >>> person.name = 'Scott_'
    >>> person.validate()
    *** ValidationError: Value "Scott_" did not match pattern "^[A-Za-z]+$".
    
    >>> person.name = 'Scott'
    >>> person.validate()
    None
    
    >>> person.to_json_schema()
    {
        "additionalProperties": false,
        "properties": {
            "age": {
                "maximum": 101,
                "minimum": 18,
                "type": "integer"
            },
            "name": {
                "maxLength": 25,
                "minLength": 3,
                "pattern": "/^[A-Za-z]+$/",
                "type": "string"
            }
        },
        "required": [
            "age",
            "name"
        ],
        "type": "object"
    }

    For more information, please see topic about validation in documentation.

  • Lazy loading, best for circular references:

    >>> class Primary(models.Base):
    ...
    ...     name = fields.StringField()
    ...     secondary = fields.EmbeddedField('Secondary')
    
    >>> class Secondary(models.Base):
    ...
    ...    data = fields.IntField()
    ...    first = fields.EmbeddedField('Primary')

    You can use either Model, full path path.to.Model or relative imports .Model or …Model.

  • Using definitions to generate schema for circular references:

    >>> class File(models.Base):
    ...
    ...     name = fields.StringField()
    ...     size = fields.FloatField()
    
    >>> class Directory(models.Base):
    ...
    ...     name = fields.StringField()
    ...     children = fields.ListField(['Directory', File])
    
    >>> class Filesystem(models.Base):
    ...
    ...     name = fields.StringField()
    ...     children = fields.ListField([Directory, File])
    
    >>> Filesystem.to_json_schema()
    {
        "type": "object",
        "properties": {
            "name": {"type": "string"}
            "children": {
                "items": {
                    "oneOf": [
                        "#/definitions/directory",
                        "#/definitions/file"
                    ]
                },
                "type": "list"
            }
        },
        "additionalProperties": false,
        "definitions": {
            "directory": {
                "additionalProperties": false,
                "properties": {
                    "children": {
                        "items": {
                            "oneOf": [
                                "#/definitions/directory",
                                "#/definitions/file"
                            ]
                        },
                        "type": "list"
                    },
                    "name": {"type": "string"}
                },
                "type": "object"
            },
            "file": {
                "additionalProperties": false,
                "properties": {
                    "name": {"type": "string"},
                    "size": {"type": "float"}
                },
                "type": "object"
            }
        }
    }
  • Compare JSON schemas:

    >>> from jsonmodels.utils import compare_schemas
    >>> schema1 = {'type': 'object'}
    >>> schema2 = {'type': 'list'}
    >>> compare_schemas(schema1, schema1)
    True
    >>> compare_schemas(schema1, schema2)
    False

More

For more examples and better description see full documentation: http://jsonmodels.rtfd.org.

History

2.1 (2015-11-02)

  • Added lazy loading of types.

  • Added schema generation for circular models.

  • Improved readability of validation error.

  • Fixed structure generation for list field.

2.0.1 (2014-11-15)

  • Fixed schema generation for primitives.

2.0 (2014-11-14)

  • Fields now are descriptors.

  • Empty required fields are still validated only during explicite validations.

Backward compatibility breaks

  • Renamed _types to types in fields.

  • Renamed _items_types to items_types in ListField.

  • Removed data transformers.

  • Renamed module error to errors.

  • Removed explicit validation - validation occurs at assign time.

  • Renamed get_value_replacement to get_default_value.

  • Renamed modules utils to utilities.

1.4 (2014-07-22)

  • Allowed validators to modify generated schema.

  • Added validator for maximum value.

  • Added utilities to convert regular expressions between Python and ECMA formats.

  • Added validator for regex.

  • Added validator for minimum value.

  • By default “validators” property of field is an empty list.

1.3.1 (2014-07-13)

  • Fixed generation of schema for BoolField.

1.3 (2014-07-13)

  • Added new fields (BoolField, TimeField, DateField and DateTimeField).

  • ListField is always not required.

  • Schema can be now generated from class itself (not from an instance).

1.2 (2014-06-18)

  • Fixed values population, when value is not dictionary.

  • Added custom validators.

  • Added tool for schema comparison.

1.1.1 (2014-06-07)

  • Added possibility to populate already initialized data to EmbeddedField.

  • Added compare_schemas utility.

1.1 (2014-05-19)

  • Added docs.

  • Added json schema generation.

  • Added tests for PEP8 and complexity.

  • Moved to Python 3.4.

  • Added PEP257 compatibility.

  • Added help text to fields.

1.0.5 (2014-04-14)

  • Added data transformers.

1.0.4 (2014-04-13)

  • List field now supports simple types.

1.0.3 (2014-04-10)

  • Fixed compatibility with Python 3.

  • Fixed str and repr methods.

1.0.2 (2014-04-03)

  • Added deep data initialization.

1.0.1 (2014-04-03)

  • Added populate method.

1.0 (2014-04-02)

  • First stable release on PyPI.

0.1.0 (2014-03-17)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsonmodels-2.1.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

jsonmodels-2.1-py2.py3-none-any.whl (17.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file jsonmodels-2.1.tar.gz.

File metadata

  • Download URL: jsonmodels-2.1.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for jsonmodels-2.1.tar.gz
Algorithm Hash digest
SHA256 e16a03c064afdd5537a04b631854b3e8727104e933bb6f03cea8abd4c6c78dac
MD5 ae81112d0463a21532a774c36f483b50
BLAKE2b-256 708515fd9ab652d9216dcf4ae9b4297130f73600646555ca72f3dd90392bde0a

See more details on using hashes here.

File details

Details for the file jsonmodels-2.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for jsonmodels-2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1cd17dadc1a23665bbe6a95fec2d28ab07926c6069bddf8c0d84a1e98da09c4e
MD5 774250c3b0d5ae032e29fb494f258288
BLAKE2b-256 3a0fefe009a1b6f6a3768dc5b6c87a5411d855cea7f7425b2269c4d4fcb4ce73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page