Skip to main content

Generate Pandas data frames, load and extract data, based on JSON Table Schema descriptors.

Project description

Travis
Coveralls
PyPi
Gitter

Generate and load Pandas data frames based on JSON Table Schema descriptors.

Installation

$ pip install datapackage
$ pip install jsontableschema-pandas

Quick start

You can easily load resources from a data package as Pandas data frames by simply using datapackage.push_datapackage function:

>>> import datapackage

>>> data_url = 'http://data.okfn.org/data/core/country-list/datapackage.json'
>>> storage = datapackage.push_datapackage(data_url, 'pandas')

>>> storage.tables
['data___data']

>>> type(storage['data___data'])
<class 'pandas.core.frame.DataFrame'>

>>> storage['data___data'].head()
             Name Code
0     Afghanistan   AF
1   Åland Islands   AX
2         Albania   AL
3         Algeria   DZ
4  American Samoa   AS

Also it is possible to pull your existing data frame into a data package:

>>> datapackage.pull_datapackage('/tmp/datapackage.json', 'country_list', 'pandas', tables={
...     'data': storage['data___data'],
... })
Storage

Tabular Storage

Package implements Tabular Storage interface.

We can get storage this way:

>>> from jsontableschema_pandas import Storage

>>> storage = Storage()

Storage works as a container for Pandas data frames. You can define new data frame inside storage using storage.create method:

>>> storage.create('data', {
...     'primaryKey': 'id',
...     'fields': [
...         {'name': 'id', 'type': 'integer'},
...         {'name': 'comment', 'type': 'string'},
...     ]
... })

>>> storage.tables
['data']

>>> storage['data'].shape
(0, 0)

Use storage.write to populate data frame with data:

>>> storage.write('data', [(1, 'a'), (2, 'b')])

>>> storage['data']
id comment
1        a
2        b

Also you can use tabulator to populate data frame from external data file:

>>> import tabulator

>>> with tabulator.topen('data/comments.csv', with_headers=True) as data:
...     storage.write('data', data)

>>> storage['data']
id comment
1        a
2        b
1     good

As you see, subsequent writes simply appends new data on top of existing ones.

Contributing

Please read the contribution guideline:

How to Contribute

Thanks!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsontableschema-pandas-0.1.4.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

jsontableschema_pandas-0.1.4-py2.py3-none-any.whl (8.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file jsontableschema-pandas-0.1.4.tar.gz.

File metadata

File hashes

Hashes for jsontableschema-pandas-0.1.4.tar.gz
Algorithm Hash digest
SHA256 6c5ecf2d3e3fc8afbd9521f17352bd587d362919a51130533425c4c2dc323501
MD5 982f1d7d1035f09f5dc766df97230042
BLAKE2b-256 9f48846bd04d4dbf3ccbfad8f225167a83a4a988350a55362ee204ec34dee86a

See more details on using hashes here.

Provenance

File details

Details for the file jsontableschema_pandas-0.1.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for jsontableschema_pandas-0.1.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e789f4a12e257e9cd868e8a9da6009ca18f56e580f5f50a9bd62422774b97e01
MD5 b6124686e378a70ca7646d8d673dd619
BLAKE2b-256 aa3ec68aa039a9dce5b2a6dbc36f236c6b9d14445199a2d2a0e5acb7773a1fb0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page