Skip to main content

Generate Pandas data frames, load and extract data, based on JSON Table Schema descriptors.

Project description

Travis
Coveralls
PyPi
SemVer
Gitter

Generate and load Pandas data frames based on JSON Table Schema descriptors.

Version v0.2 contains breaking changes:

  • removed Storage(prefix=) argument (was a stub)

  • renamed Storage(tables=) to Storage(dataframes=)

  • renamed Storage.tables to Storage.buckets

  • changed Storage.read to read into memory

  • added Storage.iter to yield row by row

Getting Started

Installation

$ pip install datapackage
$ pip install jsontableschema-pandas

Example

You can easily load resources from a data package as Pandas data frames by simply using datapackage.push_datapackage function:

>>> import datapackage

>>> data_url = 'http://data.okfn.org/data/core/country-list/datapackage.json'
>>> storage = datapackage.push_datapackage(data_url, 'pandas')

>>> storage.buckets
['data___data']

>>> type(storage['data___data'])
<class 'pandas.core.frame.DataFrame'>

>>> storage['data___data'].head()
             Name Code
0     Afghanistan   AF
1   Åland Islands   AX
2         Albania   AL
3         Algeria   DZ
4  American Samoa   AS

Also it is possible to pull your existing data frame into a data package:

>>> datapackage.pull_datapackage('/tmp/datapackage.json', 'country_list', 'pandas', tables={
...     'data': storage['data___data'],
... })
Storage

Storage

Package implements Tabular Storage interface.

We can get storage this way:

>>> from jsontableschema_pandas import Storage

>>> storage = Storage()

Storage works as a container for Pandas data frames. You can define new data frame inside storage using storage.create method:

>>> storage.create('data', {
...     'primaryKey': 'id',
...     'fields': [
...         {'name': 'id', 'type': 'integer'},
...         {'name': 'comment', 'type': 'string'},
...     ]
... })

>>> storage.buckets
['data']

>>> storage['data'].shape
(0, 0)

Use storage.write to populate data frame with data:

>>> storage.write('data', [(1, 'a'), (2, 'b')])

>>> storage['data']
id comment
1        a
2        b

Also you can use tabulator to populate data frame from external data file:

>>> import tabulator

>>> with tabulator.Stream('data/comments.csv', headers=1) as stream:
...     storage.write('data', stream)

>>> storage['data']
id comment
1        a
2        b
1     good

As you see, subsequent writes simply appends new data on top of existing ones.

API Reference

Snapshot

https://github.com/frictionlessdata/jsontableschema-py#snapshot

Detailed

Contributing

Please read the contribution guideline:

How to Contribute

Thanks!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsontableschema-pandas-0.5.0.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

jsontableschema_pandas-0.5.0-py2.py3-none-any.whl (9.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file jsontableschema-pandas-0.5.0.tar.gz.

File metadata

File hashes

Hashes for jsontableschema-pandas-0.5.0.tar.gz
Algorithm Hash digest
SHA256 cf5833ebe4ddcab29f3c652304aff6a4316fa9b92d52d9ee047b9cffbb18cebf
MD5 0f820382e791c942ace2866298d8e41f
BLAKE2b-256 fae7f73e2c77418819cb704e0d5ec08d7507df37a29eb5e06f5b403a39d669c5

See more details on using hashes here.

Provenance

File details

Details for the file jsontableschema_pandas-0.5.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for jsontableschema_pandas-0.5.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 32895c32d83d644ca017b5d376911a9ff018b00f550fdd70d967e34da4c29a25
MD5 66a29c27f4a7134b11c63b03a4925fca
BLAKE2b-256 9204808b627c8d314bee0e45a296e8810328d5f7bc1449a77c63f6e79812ed59

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page