A utility library for working with JSON Table Schema in Python
Project description
A utility library for working with JSON Table Schema in Python.
With v0.7 renewed API has been introduced in backward-compatibility manner. Documentation for deprecated API could be found here. Deprecated API will be removed with v1 release.
Features
Table to work with data tables described by JSON Table Schema
Schema representing JSON Table Schema
Field representing JSON Table Schema field
Storage to connect your tables to different storage backends like SQL Database
validate to validate JSON Table Schema (also in CLI)
infer to infer JSON Table Schema from data (also in CLI)
Gettings Started
Installation
pip install jsontableschema
Example
from jsontableschema import Table
# Create table
table = Table('path.csv', schema='schema.json')
# Print schema descriptor
print(table.schema.descriptor)
# Print cast rows in a dict form
for keyed_row in table.iter(keyed=True):
print(keyed_row)
Documentation
Let’s look at each of the components in more detail.
Table
Table represents data described by JSON Table Schema:
# pip install sqlalchemy jsontableschema-sql
import sqlalchemy as sa
from pprint import pprint
from jsontableschema import Table
# Data source
SOURCE = 'https://raw.githubusercontent.com/okfn/jsontableschema-py/master/data/data_infer.csv'
# Create SQL database
db = sa.create_engine('sqlite://')
# Data processor
def skip_under_30(erows):
for number, headers, row in erows:
krow = dict(zip(headers, row))
if krow['age'] >= 30:
yield (number, headers, row)
# Work with table
table = Table(SOURCE, post_cast=[skip_under_30])
table.schema.save('tmp/persons.json') # Save INFERRED schema
table.save('persons', backend='sql', engine=db) # Save data to SQL
table.save('tmp/persons.csv') # Save data to DRIVE
# Check the result
pprint(Table('persons', backend='sql', engine=db).read(keyed=True))
pprint(Table('tmp/persons.csv').read(keyed=True))
# Will print (twice)
# [{'age': 39, 'id': 1, 'name': 'Paul'},
# {'age': 36, 'id': 3, 'name': 'Jane'}]
Schema
A model of a schema with helpful methods for working with the schema and supported data. Schema instances can be initialized with a schema source as a filepath or url to a JSON file, or a Python dict. The schema is initially validated (see validate below), and will raise an exception if not a valid JSON Table Schema.
from jsontableschema import Schema
# Init schema
schema = Schema('path.json')
# Cast a row
schema.cast_row(['12345', 'a string', 'another field'])
Methods available to Schema instances:
descriptor - return schema descriptor
fields - an array of the schema’s Field instances
headers - an array of the schema headers
primary_key - the primary key field for the schema as an array
foreignKey - the foreign key property for the schema as an array
get_field(name) - return the field object for given name
has_field(name) - return a bool if the field exists in the schema
cast_row(row, no_fail_fast=False) - return row cast against schema
save(target) - save schema to filesystem
Where the option no_fail_fast is given, it will collect all errors it encouters and an exceptions.MultipleInvalid will be raised (if there are errors).
Field
from jsontableschemal import Field
# Init field
field = Field({'type': 'number'})
# Cast a value
field.cast_value('12345') # -> 12345
Data values can be cast to native Python objects with a Field instance. Type instances can be initialized with field descriptors. This allows formats and constraints to be defined.
Casting a value will check the value is of the expected type, is in the correct format, and complies with any constraints imposed by a schema. E.g. a date value (in ISO 8601 format) can be cast with a DateType instance. Values that can’t be cast will raise an InvalidCastError exception.
Casting a value that doesn’t meet the constraints will raise a ConstraintError exception.
Storage
On level between the high-level interface and low-level driver package uses Tabular Storage concept:
To write you own storage driver implement jsontableschema.Storage interface.
validate
Given a schema as JSON file, url to JSON file, or a Python dict, validate returns True for a valid JSON Table Schema, or raises an exception, SchemaValidationError. It validates only schema, not data against schema!
import io
import json
from jsontableschema import validate
with io.open('schema_to_validate.json') as stream:
descriptor = json.load(stream)
try:
jsontableschema.validate(descriptor)
except jsontableschema.exceptions.SchemaValidationError as exception:
# handle error
It may be useful to report multiple errors when validating a schema. This can be done with no_fail_fast flag set to True.
try:
jsontableschema.validate(descriptor, no_fail_fast=True)
except jsontableschema.exceptions.MultipleInvalid as exception:
for error in exception.errors:
# handle error
infer
Given headers and data, infer will return a JSON Table Schema as a Python dict based on the data values. Given the data file, data_to_infer.csv:
id,age,name 1,39,Paul 2,23,Jimmy 3,36,Jane 4,28,Judy
Call infer with headers and values from the datafile:
import io
import csv
from jsontableschema import infer
filepath = 'data_to_infer.csv'
with io.open(filepath) as stream:
headers = stream.readline().rstrip('\n').split(',')
values = csv.reader(stream)
schema = infer(headers, values)
schema is now a schema dict:
{u'fields': [
{
u'description': u'',
u'format': u'default',
u'name': u'id',
u'title': u'',
u'type': u'integer'
},
{
u'description': u'',
u'format': u'default',
u'name': u'age',
u'title': u'',
u'type': u'integer'
},
{
u'description': u'',
u'format': u'default',
u'name': u'name',
u'title': u'',
u'type': u'string'
}]
}
The number of rows used by infer can be limited with the row_limit argument.
exceptions
The library provides various of exceptions. Please consult with docstrings.
plugins
JSON Table Schema has a plugin system. Any package with the name like jsontableschema_<name> could be imported as:
from jsontableschema.plugins import <name>
If a plugin is not installed ImportError will be raised with a message describing how to install the plugin.
A list of officially supported plugins:
BigQuery Storage - https://github.com/frictionlessdata/jsontableschema-bigquery-py
Pandas Storage - https://github.com/frictionlessdata/jsontableschema-pandas-py
SQL Storage - https://github.com/frictionlessdata/jsontableschema-sql-py
CLI
CLI is not a part of SemVer versionning. If you use it programatically please pin concrete goodtables version to your requirements file.
JSON Table Schema features a CLI called jsontableschema. This CLI exposes the infer and validate functions for command line use.
Example of validate usage:
$ jsontableschema validate path/to-schema.json
Example of infer usage:
$ jsontableschema infer path/to/data.csv
The response is a schema as JSON. The optional argument --encoding allows a character encoding to be specified for the data file. The default is utf-8.
Read more
Thanks!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file jsontableschema-0.7.1.tar.gz
.
File metadata
- Download URL: jsontableschema-0.7.1.tar.gz
- Upload date:
- Size: 43.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | baec3a0b5db2e4bb7ac76f0d687badad6cfd8e389cf6cbabb73c062ea8e20476 |
|
MD5 | 0a9bdc342c42abdf7598a69c39978557 |
|
BLAKE2b-256 | dafe25ab77e79f3234b4bcf321e3213811516c83402c163937c8df02bc6df46f |
Provenance
File details
Details for the file jsontableschema-0.7.1-py2.py3-none-any.whl
.
File metadata
- Download URL: jsontableschema-0.7.1-py2.py3-none-any.whl
- Upload date:
- Size: 44.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | af5385f6970419c791c75ad8db2513b4d89054b1006787f7e798a36293b89740 |
|
MD5 | a5f8fcbf12c1b3ec8a76cc73d509a14b |
|
BLAKE2b-256 | d8260707699496daf0891f84a8b732a79d3456930789986d49f829ed31e49d03 |