Skip to main content

A utility library for working with JSON Table Schema in Python

Project description

JSON Table Schema
=================

| |Travis|
| |Coveralls|
| |PyPi|
| |SemVer|
| |Gitter|

A utility library for working with `JSON Table
Schema <http://dataprotocols.org/json-table-schema/>`__ in Python.

With v0.7 renewed API has been introduced in backward-compatibility
manner. Documentation for deprecated API could be found
`here <https://github.com/frictionlessdata/jsontableschema-py/tree/0.6.5#json-table-schema>`__.
Deprecated API will be removed with v1 release.

Features
--------

- ``Table`` to work with data tables described by JSON Table Schema
- ``Schema`` representing JSON Table Schema
- ``Field`` representing JSON Table Schema field
- ``validate`` to validate JSON Table Schema
- ``infer`` to infer JSON Table Schema from data
- built-in command-line interface to validate and infer schemas
- storage/plugins system to connect tables to different storage
backends like SQL Database

Gettings Started
----------------

Installation
~~~~~~~~~~~~

.. code:: bash

pip install jsontableschema

Example
~~~~~~~

.. code:: python

from jsontableschema import Table

# Create table
table = Table('path.csv', schema='schema.json')

# Print schema descriptor
print(table.schema.descriptor)

# Print cast rows in a dict form
for keyed_row in table.iter(keyed=True):
print(keyed_row)

Table
~~~~~

Table represents data described by JSON Table Schema:

.. code:: python

# pip install sqlalchemy jsontableschema-sql
import sqlalchemy as sa
from pprint import pprint
from jsontableschema import Table

# Data source
SOURCE = 'https://raw.githubusercontent.com/okfn/jsontableschema-py/master/data/data_infer.csv'

# Create SQL database
db = sa.create_engine('sqlite://')

# Data processor
def skip_under_30(erows):
for number, headers, row in erows:
krow = dict(zip(headers, row))
if krow['age'] >= 30:
yield (number, headers, row)

# Work with table
table = Table(SOURCE, post_cast=[skip_under_30])
table.schema.save('tmp/persons.json') # Save INFERRED schema
table.save('persons', backend='sql', engine=db) # Save data to SQL
table.save('tmp/persons.csv') # Save data to DRIVE

# Check the result
pprint(Table('persons', backend='sql', engine=db).read(keyed=True))
pprint(Table('tmp/persons.csv').read(keyed=True))
# Will print (twice)
# [{'age': 39, 'id': 1, 'name': 'Paul'},
# {'age': 36, 'id': 3, 'name': 'Jane'}]

Schema
~~~~~~

A model of a schema with helpful methods for working with the schema and
supported data. Schema instances can be initialized with a schema source
as a filepath or url to a JSON file, or a Python dict. The schema is
initially validated (see `validate <#validate>`__ below), and will raise
an exception if not a valid JSON Table Schema.

.. code:: python

from jsontableschema import Schema

# Init schema
schema = Schema('path.json')

# Cast a row
schema.cast_row(['12345', 'a string', 'another field'])

Methods available to ``Schema`` instances:

- ``descriptor`` - return schema descriptor
- ``fields`` - an array of the schema's Field instances
- ``headers`` - an array of the schema headers
- ``primary_key`` - the primary key field for the schema as an array
- ``foreignKey`` - the foreign key property for the schema as an array
- ``get_field(name)`` - return the field object for given name
- ``has_field(name)`` - return a bool if the field exists in the schema
- ``cast_row(row, no_fail_fast=False)`` - return row cast against
schema
- ``save(target)`` - save schema to filesystem

Where the option ``no_fail_fast`` is given, it will collect all errors
it encouters and an exceptions.MultipleInvalid will be raised (if there
are errors).

Field
~~~~~

.. code:: python

from jsontableschemal import Field

# Init field
field = Field({'type': 'number'})

# Cast a value
field.cast_value('12345') # -> 12345

Data values can be cast to native Python objects with a Field instance.
Type instances can be initialized with `field
descriptors <http://dataprotocols.org/json-table-schema/#field-descriptors>`__.
This allows formats and constraints to be defined.

Casting a value will check the value is of the expected type, is in the
correct format, and complies with any constraints imposed by a schema.
E.g. a date value (in ISO 8601 format) can be cast with a DateType
instance. Values that can't be cast will raise an ``InvalidCastError``
exception.

Casting a value that doesn't meet the constraints will raise a
``ConstraintError`` exception.

validate
~~~~~~~~

Given a schema as JSON file, url to JSON file, or a Python dict,
``validate`` returns ``True`` for a valid JSON Table Schema, or raises
an exception, ``SchemaValidationError``. It validates only **schema**,
not data against schema!

.. code:: python

import io
import json

from jsontableschema import validate

with io.open('schema_to_validate.json') as stream:
descriptor = json.load(stream)

try:
jsontableschema.validate(descriptor)
except jsontableschema.exceptions.SchemaValidationError as exception:
# handle error

It may be useful to report multiple errors when validating a schema.
This can be done with ``no_fail_fast`` flag set to True.

.. code:: python

try:
jsontableschema.validate(descriptor, no_fail_fast=True)
except jsontableschema.exceptions.MultipleInvalid as exception:
for error in exception.errors:
# handle error

infer
~~~~~

Given headers and data, ``infer`` will return a JSON Table Schema as a
Python dict based on the data values. Given the data file,
data\_to\_infer.csv:

::

id,age,name
1,39,Paul
2,23,Jimmy
3,36,Jane
4,28,Judy

Call ``infer`` with headers and values from the datafile:

.. code:: python

import io
import csv

from jsontableschema import infer

filepath = 'data_to_infer.csv'
with io.open(filepath) as stream:
headers = stream.readline().rstrip('\n').split(',')
values = csv.reader(stream)

schema = infer(headers, values)

``schema`` is now a schema dict:

.. code:: python

{u'fields': [
{
u'description': u'',
u'format': u'default',
u'name': u'id',
u'title': u'',
u'type': u'integer'
},
{
u'description': u'',
u'format': u'default',
u'name': u'age',
u'title': u'',
u'type': u'integer'
},
{
u'description': u'',
u'format': u'default',
u'name': u'name',
u'title': u'',
u'type': u'string'
}]
}

The number of rows used by ``infer`` can be limited with the
``row_limit`` argument.

CLI
~~~

It's a provisional API excluded from SemVer. If you use it as a part
of other program please pin concrete ``goodtables`` version to your
requirements file.

JSON Table Schema features a CLI called ``jsontableschema``. This CLI
exposes the ``infer`` and ``validate`` functions for command line use.

Example of ``validate`` usage:

::

$ jsontableschema validate path/to-schema.json

Example of ``infer`` usage:

::

$ jsontableschema infer path/to/data.csv

The response is a schema as JSON. The optional argument ``--encoding``
allows a character encoding to be specified for the data file. The
default is utf-8.

Storage
~~~~~~~

The library includes interface declaration to implement tabular
``Storage``:

|Storage|

| An implementor should follow ``jsontableschema.Storage`` interface to
write his
| own storage backend. This backend could be used with ``Table`` class.
See ``plugins``
| system below to know how to integrate custom storage plugin.

plugins
~~~~~~~

JSON Table Schema has a plugin system. Any package with the name like
``jsontableschema_<name>`` could be imported as:

.. code:: python

from jsontableschema.plugins import <name>

If a plugin is not installed ``ImportError`` will be raised with a
message describing how to install the plugin.

A list of officially supported plugins:

- BigQuery Storage -
https://github.com/frictionlessdata/jsontableschema-bigquery-py
- Pandas Storage -
https://github.com/frictionlessdata/jsontableschema-pandas-py
- SQL Storage -
https://github.com/frictionlessdata/jsontableschema-sql-py

API Reference
-------------

Snapshot
~~~~~~~~

::

Table(source, schema=None, post_cast=None, backend=None, **options)
stream -> tabulator.Stream
schema -> Schema
name -> str
iter(keyed/extended=False) -> (generator) (keyed/extended)row[]
read(keyed/extended=False, limit=None) -> (keyed/extended)row[]
save(target, backend=None, **options)
Schema(descriptor)
descriptor -> dict
fields -> Field[]
headers -> str[]
primary_key -> str[]
foreign_keys -> str[]
get_field(name) -> Field
has_field(name) -> bool
cast_row(row, no_fail_fast=False) -> row
save(target)
Field(descriptor)
descriptor -> dict
name -> str
type -> str
format -> str
constraints -> dict
cast_value(value, skip_constraints=False) -> value
test_value(value, skip_constraints=False, constraint=None) -> bool
validate(descriptor, no_fail_fast=False) -> bool
infer(headers, values) -> descriptor
exceptions
~cli
---
Storage(**options)
buckets -> str[]
create(bucket, descriptor, force=False)
delete(bucket=None, ignore=False)
describe(bucket, descriptor=None) -> descriptor
iter(bucket) -> (generator) row[]
read(bucket) -> row[]
write(bucket, rows)
plugins

Detailed
~~~~~~~~

- `Docstrings <https://github.com/frictionlessdata/jsontableschema-py/tree/master/jsontableschema>`__
- `Changelog <https://github.com/frictionlessdata/jsontableschema-py/commits/master>`__

Contributing
------------

Please read the contribution guideline:

`How to Contribute <CONTRIBUTING.md>`__

Thanks!

.. |Travis| image:: https://travis-ci.org/frictionlessdata/jsontableschema-py.svg?branch=master
:target: https://travis-ci.org/frictionlessdata/jsontableschema-py
.. |Coveralls| image:: http://img.shields.io/coveralls/frictionlessdata/jsontableschema-py.svg?branch=master
:target: https://coveralls.io/r/frictionlessdata/jsontableschema-py?branch=master
.. |PyPi| image:: https://img.shields.io/pypi/v/jsontableschema.svg
:target: https://pypi-hypernode.com/pypi/jsontableschema
.. |SemVer| image:: https://img.shields.io/badge/versions-SemVer-brightgreen.svg
:target: http://semver.org/
.. |Gitter| image:: https://img.shields.io/gitter/room/frictionlessdata/chat.svg
:target: https://gitter.im/frictionlessdata/chat
.. |Storage| image:: files/storage.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsontableschema-0.8.0.tar.gz (46.5 kB view details)

Uploaded Source

Built Distribution

jsontableschema-0.8.0-py2.py3-none-any.whl (46.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file jsontableschema-0.8.0.tar.gz.

File metadata

File hashes

Hashes for jsontableschema-0.8.0.tar.gz
Algorithm Hash digest
SHA256 001279987fd027f921a4e5afdaa2a44b051bceddc7689fddfcccb7d052b9fd74
MD5 896933b0ceb4f8d66aa0ded7bdd422d5
BLAKE2b-256 352d9935e4c4a63f7bb71caf3729f1b2d4cacacbb8df5c486dc9d213e5898d6a

See more details on using hashes here.

Provenance

File details

Details for the file jsontableschema-0.8.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for jsontableschema-0.8.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 57babe04882dbca4248cbc6489ec341be0721f9bce278522a4e59bd6d2116ec8
MD5 d9f88b1dd25410f719afd92d054c9da1
BLAKE2b-256 4b7d061b18bd6a9fe609c0e21b9847855b1ee7a5e6b69459141be2713379ac51

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page