Skip to main content

Jubatus Toolkit

Project description

Travis Coveralls PyPi

jubakit: Jubatus Toolkit

jubakit is a Python module to access Jubatus features easily. jubakit can be used in conjunction with scikit-learn so that you can use powerful features like cross validation and model evaluation. See the Jubakit Documentation for the detailed description.

Currently jubakit supports Classifier, Anomaly, Recommender and Weight engines.

Install

pip install jubakit

Requirements

  • Python 2.6, 2.7, 3.3, 3.4 or 3.5.

  • Jubatus needs to be installed.

  • Although not mandatory, installing scikit-learn is required to use some features like K-fold cross validation.

Quick Start

The following example shows how to perform train/classify using CSV dataset.

from jubakit.classifier import Classifier, Schema, Dataset, Config
from jubakit.loader.csv import CSVLoader

# Load a CSV file.
loader = CSVLoader('iris.csv')

# Define types for each column in the CSV file.
schema = Schema({
  'Species': Schema.LABEL,
}, Schema.NUMBER)

# Get the shuffled dataset.
dataset = Dataset(loader, schema).shuffle()

# Run the classifier service (`jubaclassifier` process).
classifier = Classifier.run(Config())

# Train the classifier.
for _ in classifier.train(dataset): pass

# Classify using the trained classifier.
for (idx, label, result) in classifier.classify(dataset):
  print("true label: {0}, estimated label: {1}".format(label, result[0][0]))

Examples by Topics

See the example directory for working examples.

Example

Topics

Requires scikit-learn

classifier_csv.py

Handling CSV file and numeric features

classifier_shogun.py

Handling CSV file and string features

classifier_digits.py

Handling toy dataset (digits)

classifier_libsvm.py

Handling LIBSVM file

classifier_kfold.py

K-fold cross validation and metrics

classifier_parameter.py

Finding best hyper parameter

classifier_hyperopt_tuning.py

Finding best hyper parameter using hyperopt

classifier_bulk.py

Bulk Train-Test Classifier

classifier_twitter.py

Handling Twitter Streams

classifier_model_extract.py

Extract contents of Classfier model file

anomaly_auc.py

Anomaly detection and metrics

recommender_npb.py

Recommend similar items

weight_shogun.py

Tracing fv_converter behavior using Weight

weight_model_extract.py

Extract contents of Weight model file

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jubakit-0.4.1.tar.gz (45.2 kB view details)

Uploaded Source

File details

Details for the file jubakit-0.4.1.tar.gz.

File metadata

  • Download URL: jubakit-0.4.1.tar.gz
  • Upload date:
  • Size: 45.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for jubakit-0.4.1.tar.gz
Algorithm Hash digest
SHA256 2279b2dc030474e654829090d9c43e2fa98c42ff5114974a4b6fe869dd635b24
MD5 8dc59978c3a7e8025bff2230adfd4ec7
BLAKE2b-256 5abe73a8c69cd812795fd8e200087d2dbfcef095ec9838539915d3eedb706e42

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page