Skip to main content

Julia-style arrays in Python

Project description

julialg

Julia-style arrays in Python

Python library for mimicking Julia LinearAlgebra array indexing style and display formatting.

Test Result: CircleCI

Motivation and Summary

Julia's LinearAlgebra package has some nice features, some of which are easier to emulate in Python than others. When comparing the results of Python code vs Julia code, it is annoying to have to mentally switch between the 0-indexed nature of Python and the 1-indexed nature of Julia. Also, the Julia arrays have a prettier array.

This package wraps numpy n-dimensional arrays in a new class, JulArray, and allows for 1-indexed slicing (more mathematically intuitive) instead of 0-indexed slicing (computer science convention). Also improves the prettiness of the representation of the array in a manner similar to Julia's LinearAlgebra package. To be clear, this is a Python package, meant to bring some of the elegance of Julia's interface for tensors to the Python setting

Indexing

The JulArray class wraps a numpy.ndarray but overrides the getitem syntax to allow for 1-indexed style instead of the default 0-indexed style. For example:

>>> import numpy, julialg

# Create a numpy array
>>> a = numpy.arange(1, 11).reshape((2, 5))

# Create a JulArray from the numpy array
>>> j = julialg.JulArray(a)

# Index the numpy array using 0-indexed syntax
>>> a[0, 0:2]
array([1, 2])

# Index the JulArray using 1-indexed syntax
>>> j[1, 1:3].array
array([1, 2])

Notice in the above sample that the JulArray is able to convert both ints and slices from 1-indexed notation to 0-indexed notation to produce the same underlying numpy array.

Display

The JulArray overrides the default representation of the numpy array to be more cleanly formatted (like Julia arrays).

>>> julialg.JulArray(numpy.arange(1.0, 11.0).reshape((2, 5)))
2x5 Array{float64,2}
  1.0000     6.0000
  2.0000     7.0000
  3.0000     8.0000
  4.0000     9.0000
  5.0000    10.0000

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

julialg-0.1.0.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

julialg-0.1.0-py3-none-any.whl (4.6 kB view details)

Uploaded Python 3

File details

Details for the file julialg-0.1.0.tar.gz.

File metadata

  • Download URL: julialg-0.1.0.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for julialg-0.1.0.tar.gz
Algorithm Hash digest
SHA256 75ff8104b307d5702000344175263e347606c396fbc7cf507c03dd6472bda6d1
MD5 03778338c1be84cad1d50b6f86f02e81
BLAKE2b-256 19b3a22b77de91be767f7b28b5e1ad1b3d2a3f1c981eefc1d77399110cd92aa7

See more details on using hashes here.

Provenance

File details

Details for the file julialg-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: julialg-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 4.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for julialg-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 72a8733d95b4facb652fd5fe0cce47d40952671b3cc7bc067ec4404ed6738efb
MD5 62155d4e701952f92822d033dd695d35
BLAKE2b-256 aec186f0a2f94e94e9977ec28803e5c5e4457f8f8adb3e7809796cb2a304dd24

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page