Skip to main content

A generative AI extension for JupyterLab

Project description

jupyter_ai

Github Actions Status A generative AI extension for JupyterLab

This extension is composed of a Python package named jupyter_ai for the server extension and a NPM package named jupyter_ai for the frontend extension.

Requirements

  • JupyterLab >= 4.0.0
  • Jupyter Server >= 2.0.0

Installation

You can use conda or pip to install Jupyter AI. If you're using macOS on an Apple Silicon-based Mac (M1, M1 Pro, M2, etc.), we strongly recommend using conda.

Before you can use Jupyter AI, you will need to install any packages and set environment variables with API keys for the model providers that you will use. See our documentation for details about what you'll need.

With pip

$ pip install jupyter_ai

With conda

First, install conda and create an environment that uses Python 3.11:

$ conda create -n jupyter-ai python=3.11
$ conda activate jupyter-ai
$ pip install jupyter_ai

Uninstall

To remove the extension, execute:

$ pip uninstall jupyter_ai

Troubleshoot

If you can see the extension UI, but it is not working, check that the server extension is enabled:

jupyter server extension list

If the server extension is installed and enabled, but you don't see the extension UI, verify that the frontend extension is installed:

jupyter labextension list

Contributing

Development install

Note: You will need NodeJS to build the extension package.

The jlpm command is JupyterLab's pinned version of yarn that is installed with JupyterLab. You may use yarn or npm in lieu of jlpm below.

# Clone the repo to your local environment
# Change directory to the jupyter_ai directory
# Install package in development mode
pip install -e .
# Link your development version of the extension with JupyterLab
jupyter labextension develop . --overwrite
# Server extension must be manually installed in develop mode
jupyter server extension enable jupyter_ai
# Rebuild extension Typescript source after making changes
jlpm build

You can watch the source directory and run JupyterLab at the same time in different terminals to watch for changes in the extension's source and automatically rebuild the extension.

# Watch the source directory in one terminal, automatically rebuilding when needed
jlpm watch
# Run JupyterLab in another terminal
jupyter lab

With the watch command running, every saved change will immediately be built locally and available in your running JupyterLab. Refresh JupyterLab to load the change in your browser (you may need to wait several seconds for the extension to be rebuilt).

By default, the jlpm build command generates the source maps for this extension to make it easier to debug using the browser dev tools. To also generate source maps for the JupyterLab core extensions, you can run the following command:

jupyter lab build --minimize=False

Development uninstall

# Server extension must be manually disabled in develop mode
jupyter server extension disable jupyter_ai
pip uninstall jupyter_ai

In development mode, you will also need to remove the symlink created by jupyter labextension develop command. To find its location, you can run jupyter labextension list to figure out where the labextensions folder is located. Then you can remove the symlink named jupyter_ai within that folder.

Testing the extension

Server tests

This extension is using Pytest for Python code testing.

Install test dependencies (needed only once):

pip install -e ".[test]"

To execute them, run:

pytest -vv -r ap --cov jupyter_ai

Integration tests

This extension uses Playwright for the integration tests (aka user level tests). More precisely, the JupyterLab helper Galata is used to handle testing the extension in JupyterLab.

More information are provided within the ui-tests README.

Packaging the extension

See RELEASE

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jupyter_ai-2.19.0.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

jupyter_ai-2.19.0-py3-none-any.whl (970.4 kB view details)

Uploaded Python 3

File details

Details for the file jupyter_ai-2.19.0.tar.gz.

File metadata

  • Download URL: jupyter_ai-2.19.0.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for jupyter_ai-2.19.0.tar.gz
Algorithm Hash digest
SHA256 746220ac7205f57047cb8c7bb1c94c7a02cdbad9af0c534762cd06168cd66b8e
MD5 32abbcf690224143bb8cb4dbc1576948
BLAKE2b-256 21f603205e3dbcd26dd5dd06028066d0288f5d56799d217e33fc005e0b0acd88

See more details on using hashes here.

File details

Details for the file jupyter_ai-2.19.0-py3-none-any.whl.

File metadata

  • Download URL: jupyter_ai-2.19.0-py3-none-any.whl
  • Upload date:
  • Size: 970.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for jupyter_ai-2.19.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d03540ea42b181946ccad7287b4306bd8f37af09d9f7b3e45b0adc0eb0449b34
MD5 02919ab1e492e55305c788eb1a637e62
BLAKE2b-256 f8105d05b9f6b7e98c26a8bfc3885caabba86816ac975ab725c39cc740181f4b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page