Skip to main content

A Jupyter Widget for Interactive Data Visualization

Project description

Jupyter Bifrost

Github Actions Status Binder npm version PyPI version License

Jupyter Bifrost Workflow A Jupyter Widget for Interactive Data Visualization. Bifrost provides useful chart recommendations and easy integration with Pandas DataFrames. It also provides a variety of analysis tools:

  • Chart history log for keeping track of your data analysis.
  • Targeted graph suggestions to drive further data exploration.
  • Interactive filters for quantitative and categorical fields.
  • Aggregations and binning for axis encodings.
  • An expressive Python API

The extension allows data scientists to build familiarity with a dataset without sacrificing the reproducibility of code. Changes made in the Bifrost GUI are automatically translated into Pandas Queries, allowing developers to jump back into scripting whenever it is most convenient.

Getting Started

Installation

You can install using pip:

pip install jupyter_bifrost

If you are using Jupyter Notebook 5.2 or earlier, you may also need to enable the nbextension:

jupyter nbextension enable --py [--sys-prefix|--user|--system] jupyter_bifrost

Using the Extension

Jupyter Bifrost is intended to be used in Jupyter Notebooks in JupyterLab. Start by importing the package:

from jupyter_bifrost import Chart

Then instantiate the chart object with a dataset:

chart = Chart("<my-dataset>.csv")
#or
df = pd.DataFrame()
chart = Chart(df)

Finally, plot the dataset to open up the Bifrost GUI:

res = chart.plot()
# the `res` DataFrame will always stay up to date with the filters and aggregations applied in the GUI

For additional help with the extension, take a look at the wiki, or the help menu located in the menu bar of the Bifrost GUI.

Development Installation

Create a dev environment:

conda create -n jupyter_bifrost-dev -c conda-forge nodejs yarn python jupyterlab
conda activate jupyter_bifrost-dev

Install the python. This will also build the TS package.

pip install -e ".[test, examples]"

When developing your extensions, you need to manually enable your extensions with the notebook / lab frontend. For lab, this is done by the command:

jupyter labextension develop --overwrite .
yarn run build

For classic notebook, you need to run:

jupyter nbextension install --sys-prefix --symlink --overwrite --py jupyter_bifrost
jupyter nbextension enable --sys-prefix --py jupyter_bifrost

Note that the --symlink flag doesn't work on Windows, so you will here have to run the install command every time that you rebuild your extension. For certain installations you might also need another flag instead of --sys-prefix, but we won't cover the meaning of those flags here.

How to see your changes

Typescript:

If you use JupyterLab to develop then you can watch the source directory and run JupyterLab at the same time in different terminals to watch for changes in the extension's source and automatically rebuild the widget.

# Watch the source directory in one terminal, automatically rebuilding when needed
jlpm watch
# Run JupyterLab in another terminal
jupyter lab

After a change wait for the build to finish and then refresh your browser and the changes should take effect.

Python:

If you make a change to the python code then you will need to restart the notebook kernel to have it take effect.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jupyter_bifrost-0.3.0.tar.gz (10.4 MB view details)

Uploaded Source

Built Distribution

jupyter_bifrost-0.3.0-py2.py3-none-any.whl (1.1 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file jupyter_bifrost-0.3.0.tar.gz.

File metadata

  • Download URL: jupyter_bifrost-0.3.0.tar.gz
  • Upload date:
  • Size: 10.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.6.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.6.14

File hashes

Hashes for jupyter_bifrost-0.3.0.tar.gz
Algorithm Hash digest
SHA256 d700a5e3da8e32c8631fd6d71cb362784f8a300e1f0e0007dfe20ba0d35b9be8
MD5 00f3853ce1138c40df4b857a8336efb6
BLAKE2b-256 3768abfd85cbb6809c2d9e9fbec31312c1841efcccb7add09c2c9a3ca47c5d4f

See more details on using hashes here.

File details

Details for the file jupyter_bifrost-0.3.0-py2.py3-none-any.whl.

File metadata

  • Download URL: jupyter_bifrost-0.3.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.6.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.6.14

File hashes

Hashes for jupyter_bifrost-0.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b8ae5b0a3e14b06ec6b6f4e9dae25a29b7d5814d7b821d5f170f1623ae92ccec
MD5 248130d6db1626e88825bed731f9839c
BLAKE2b-256 b01f1b34204e5c36fd67f8d00c7d654c4f22f8303c5c9cb187fb721db340f768

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page