A defined interface for working with a cache of jupyter notebooks.
Project description
jupyter-cache
A defined interface for working with a cache of jupyter notebooks.
Why use jupyter-cache?
If you have a number of notebooks whose execution outputs you want to ensure are kept up to date, without having to re-execute them every time (particularly for long running code, or text-based formats that do not store the outputs).
The notebooks must have deterministic execution outputs:
- You use the same environment to run them (e.g. the same installed packages)
- They run no non-deterministic code (e.g. random numbers)
- They do not depend on external resources (e.g. files or network connections) that change over time
For example, it is utilised by jupyter-book, to allow for fast document re-builds.
Install
pip install jupyter-cache
For development:
git clone https://github.com/executablebooks/jupyter-cache
cd jupyter-cache
git checkout develop
pip install -e .[cli,code_style,testing]
See the documentation for usage.
Development
Some desired requirements (not yet all implemented):
- Persistent
- Separates out "edits to content" from "edits to code cells". Cell rearranges and code cell changes should require a re-execution. Content changes should not.
- Allow parallel access to notebooks (for execution)
- Store execution statistics/reports
- Store external assets: Notebooks being executed often require external assets: importing scripts/data/etc. These are prepared by the users.
- Store execution artefacts: created during execution
- A transparent and robust cache invalidation: imagine the user updating an external dependency or a Python module, or checking out a different git branch.
Contributing
jupyter-cache follows the Executable Book Contribution Guide. We'd love your help!
Code Style
Code style is tested using flake8,
with the configuration set in .flake8
,
and code formatted with black.
Installing with jupyter-cache[code_style]
makes the pre-commit
package available, which will ensure this style is met before commits are submitted, by reformatting the code
and testing for lint errors.
It can be setup by:
>> cd jupyter-cache
>> pre-commit install
Optionally you can run black
and flake8
separately:
>> black .
>> flake8 .
Editors like VS Code also have automatic code reformat utilities, which can adhere to this standard.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for jupyter_cache-0.6.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2fce7d4975805c77f75bdfc1bc2e82bc538b8e5b1af27f2f5e06d55b9f996a82 |
|
MD5 | 7b8e45cdb6ae6cf84cb53eccd82d2e42 |
|
BLAKE2b-256 | da8e918b115bb3b4b821e2d43315e1a08b909219723191623ffbae9072fd226a |