Skip to main content

A Jupyter Notebook server extension which crawls a thredds catalog

Project description

# jupyterlab_thredds

[![Build Status](https://travis-ci.org/eWaterCycle/jupyterlab_thredds.svg?branch=master)](https://travis-ci.org/eWaterCycle/jupyterlab_thredds) [![SonarCloud Quality](https://sonarcloud.io/api/project_badges/measure?project=jupyterlab_thredds&metric=alert_status)](https://sonarcloud.io/dashboard?id=jupyterlab_thredds) [![SonarCloud Coverage](https://sonarcloud.io/api/project_badges/measure?project=jupyterlab_thredds&metric=coverage)](https://sonarcloud.io/component_measures?id=jupyterlab_thredds&metric=coverage) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1241007.svg)](https://doi.org/10.5281/zenodo.1241007)

JupyterLab dataset browser for [THREDDS catalog](https://www.unidata.ucar.edu/software/thredds/v4.6/tds/catalog/index.html)

Can inject [iris](http://scitools.org.uk/iris/docs/latest/index.html)/[xarray](https://xarray.pydata.org)/[leaflet](https://github.com/jupyter-widgets/ipyleaflet) code cells into a Python notebook of a selected dataset to further process/visualize the dataset.

![screenshot](https://github.com/eWaterCycle/jupyterlab_thredds/blob/master/jupyterlab_thredds.gif “Screenshot”)

## Prerequisites

  • JupyterLab, pip install jupyterlab

  • ipywidgets, jupyter labextension install @jupyter-widgets/jupyterlab-manager, requirement for ipyleaflet

  • ipyleaflet, jupyter labextension install jupyter-leaflet, to load a WMS layer

  • [iris](http://scitools.org.uk/iris/docs/latest/index.html), conda install -c conda-forge iris

## Installation

`bash pip install jupyterlab_thredds jupyter labextension install @ewatercycle/jupyterlab_thredds `

## Usage

  1. Start Jupyter lab with jupyter lab

  2. In Jupyter lab open a notebook

  3. Open the THREDDS tab on the left side.

  4. Fill the catalog url

  5. Press search button

  6. Select how you would like to open the dataset, by default it uses [iris](http://scitools.org.uk/iris/docs/latest/index.html) Python package.

  7. Press a dataset to insert code into a notebook

## Development

For a development install (requires [yarn](https://yarnpkg.com/)), do the following in the repository directory:

`bash yarn install yarn build jupyter labextension link . python setup.py develop jupyter serverextension enable --sys-prefix jupyterlab_thredds `

To rebuild the package and the JupyterLab app:

`bash yarn build jupyter lab build `

Watch mode `bash # shell 1 yarm watch # shell 2 jupyter lab --ip=0.0.0.0 --no-browser --watch `

## Release

To make a new release perform the following steps: 1. Update version in package.json and jupyterlab_thredds/version.py 2. Make sure tests pass by running yarn test and pytest 3. Publish lab extension to npmjs with yarn build and yarn publish –access=public 4. Publish server extension to pypi with python setup.py sdist bdist_wheel and twine upload dist/*

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jupyterlab_thredds-0.2.1.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

jupyterlab_thredds-0.2.1-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file jupyterlab_thredds-0.2.1.tar.gz.

File metadata

  • Download URL: jupyterlab_thredds-0.2.1.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.4

File hashes

Hashes for jupyterlab_thredds-0.2.1.tar.gz
Algorithm Hash digest
SHA256 0cca618ec489c427531c745f24a96714fe6d31c816aa0120b97a48613dfb37cd
MD5 db29ac9184acaf984fc441c622191235
BLAKE2b-256 44812ea17595f75daf2c4fba0e35fc5b62967215a6e9637204bdb5e81498ea06

See more details on using hashes here.

File details

Details for the file jupyterlab_thredds-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: jupyterlab_thredds-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 6.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.4

File hashes

Hashes for jupyterlab_thredds-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7f1a33b9b24328cb0f535430106e4c74d076a845243824bd53af2e67ec2de2dc
MD5 3f9f774ed36d6225e7d436f76e7820db
BLAKE2b-256 e9308527b87166f26a8f319480a407b692c7e447e2def6aa4dd7e110e8a8ebb1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page