Skip to main content

JupyterLab - Vega 3 and Vega-Lite 2 Mime Renderer Extension

Project description

jupyterlab-vega3

A JupyterLab extension for rendering Vega 3 and Vega-Lite 2

Vega 3 is deprecated. The latest version comes by default with JupyterLab. Only use this extension if you have specifications that do not work with the latest version.

demo

Requirements

  • JupyterLab >= 3.0

Install

pip install jupyterlab-vega3

Usage

To render Vega-Lite output in IPython:

from IPython.display import display

display({
    "application/vnd.vegalite.v2+json": {
        "$schema": "https://vega.github.io/schema/vega-lite/v2.json",
        "description": "A simple bar chart with embedded data.",
        "data": {
            "values": [
                {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
                {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
                {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
            ]
        },
        "mark": "bar",
        "encoding": {
            "x": {"field": "a", "type": "ordinal"},
            "y": {"field": "b", "type": "quantitative"}
        }
    }
}, raw=True)

Using the altair library:

import altair as alt

cars = alt.load_dataset('cars')

chart = alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)

chart

Provide vega-embed options via metadata:

from IPython.display import display

display({
    "application/vnd.vegalite.v2+json": {
        "$schema": "https://vega.github.io/schema/vega-lite/v2.json",
        "description": "A simple bar chart with embedded data.",
        "data": {
            "values": [
                {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
                {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
                {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
            ]
        },
        "mark": "bar",
        "encoding": {
            "x": {"field": "a", "type": "ordinal"},
            "y": {"field": "b", "type": "quantitative"}
        }
    }
}, metadata={
    "application/vnd.vegalite.v2+json": {
        "embed_options": {
            "actions": False
        }
    }
}, raw=True)

Provide vega-embed options via altair:

import altair as alt

alt.renderers.enable('default', embed_options={'actions': False})

cars = alt.load_dataset('cars')

chart = alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)

chart

To render a .vl, .vg, vl.json or .vg.json file, simply open it:

Contributing

Development install

Note: You will need NodeJS to build the extension package.

The jlpm command is JupyterLab's pinned version of yarn that is installed with JupyterLab. You may use yarn or npm in lieu of jlpm below.

# Clone the repo to your local environment
# Change directory to the jupyterlab-vega3 directory
# Install package in development mode
pip install -e .
# Link your development version of the extension with JupyterLab
jupyter labextension develop . --overwrite
# Rebuild extension Typescript source after making changes
jlpm run build

You can watch the source directory and run JupyterLab at the same time in different terminals to watch for changes in the extension's source and automatically rebuild the extension.

# Watch the source directory in one terminal, automatically rebuilding when needed
jlpm run watch
# Run JupyterLab in another terminal
jupyter lab

With the watch command running, every saved change will immediately be built locally and available in your running JupyterLab. Refresh JupyterLab to load the change in your browser (you may need to wait several seconds for the extension to be rebuilt).

By default, the jlpm run build command generates the source maps for this extension to make it easier to debug using the browser dev tools. To also generate source maps for the JupyterLab core extensions, you can run the following command:

jupyter lab build --minimize=False

Uninstall

pip uninstall jupyterlab-vega3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jupyterlab_vega3-3.3.0.tar.gz (279.1 kB view details)

Uploaded Source

Built Distribution

jupyterlab_vega3-3.3.0-py3-none-any.whl (259.0 kB view details)

Uploaded Python 3

File details

Details for the file jupyterlab_vega3-3.3.0.tar.gz.

File metadata

  • Download URL: jupyterlab_vega3-3.3.0.tar.gz
  • Upload date:
  • Size: 279.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for jupyterlab_vega3-3.3.0.tar.gz
Algorithm Hash digest
SHA256 0e940ea443ffab48ae9e8e240a856a7470713b5640c29e7ddde2ddaacb748d76
MD5 4a3511abc8cbc12b3a51c5f74cb26df7
BLAKE2b-256 61c4f89e7f99fdce25b0270876db35a36b72d9ed3ebb8953e6d647f1a8de60fa

See more details on using hashes here.

Provenance

File details

Details for the file jupyterlab_vega3-3.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for jupyterlab_vega3-3.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 217defd09b2388cded417b4e0437aaf67c4d926a277194ff3ce63020d3085b1d
MD5 2e28612024bbcddd586c5c319f3f27e7
BLAKE2b-256 2585fa3420a09eb65d8d707bed850770f3490be9b8aaaf42428edb1a75eb8018

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page