Skip to main content

JupyterLab - Vega 3 and Vega-Lite 2 Mime Renderer Extension

Project description

jupyterlab-vega3

A JupyterLab extension for rendering Vega 3 and Vega-Lite 2

Vega 3 is deprecated. The latest version comes by default with JupyterLab. Only use this extension if you have specifications that do not work with the latest version.

demo

Requirements

  • JupyterLab >= 3.0

Install

pip install jupyterlab-vega3

Usage

To render Vega-Lite output in IPython:

from IPython.display import display

display({
    "application/vnd.vegalite.v2+json": {
        "$schema": "https://vega.github.io/schema/vega-lite/v2.json",
        "description": "A simple bar chart with embedded data.",
        "data": {
            "values": [
                {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
                {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
                {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
            ]
        },
        "mark": "bar",
        "encoding": {
            "x": {"field": "a", "type": "ordinal"},
            "y": {"field": "b", "type": "quantitative"}
        }
    }
}, raw=True)

Using the altair library:

import altair as alt

cars = alt.load_dataset('cars')

chart = alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)

chart

Provide vega-embed options via metadata:

from IPython.display import display

display({
    "application/vnd.vegalite.v2+json": {
        "$schema": "https://vega.github.io/schema/vega-lite/v2.json",
        "description": "A simple bar chart with embedded data.",
        "data": {
            "values": [
                {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
                {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
                {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
            ]
        },
        "mark": "bar",
        "encoding": {
            "x": {"field": "a", "type": "ordinal"},
            "y": {"field": "b", "type": "quantitative"}
        }
    }
}, metadata={
    "application/vnd.vegalite.v2+json": {
        "embed_options": {
            "actions": False
        }
    }
}, raw=True)

Provide vega-embed options via altair:

import altair as alt

alt.renderers.enable('default', embed_options={'actions': False})

cars = alt.load_dataset('cars')

chart = alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)

chart

To render a .vl, .vg, vl.json or .vg.json file, simply open it:

Contributing

Development install

Note: You will need NodeJS to build the extension package.

The jlpm command is JupyterLab's pinned version of yarn that is installed with JupyterLab. You may use yarn or npm in lieu of jlpm below.

# Clone the repo to your local environment
# Change directory to the jupyterlab-vega3 directory
# Install package in development mode
pip install -e .
# Link your development version of the extension with JupyterLab
jupyter labextension develop . --overwrite
# Rebuild extension Typescript source after making changes
jlpm run build

You can watch the source directory and run JupyterLab at the same time in different terminals to watch for changes in the extension's source and automatically rebuild the extension.

# Watch the source directory in one terminal, automatically rebuilding when needed
jlpm run watch
# Run JupyterLab in another terminal
jupyter lab

With the watch command running, every saved change will immediately be built locally and available in your running JupyterLab. Refresh JupyterLab to load the change in your browser (you may need to wait several seconds for the extension to be rebuilt).

By default, the jlpm run build command generates the source maps for this extension to make it easier to debug using the browser dev tools. To also generate source maps for the JupyterLab core extensions, you can run the following command:

jupyter lab build --minimize=False

Uninstall

pip uninstall jupyterlab-vega3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jupyterlab-vega3-3.1.2.tar.gz (1.1 MB view details)

Uploaded Source

Built Distribution

jupyterlab_vega3-3.1.2-py3-none-any.whl (2.2 MB view details)

Uploaded Python 3

File details

Details for the file jupyterlab-vega3-3.1.2.tar.gz.

File metadata

  • Download URL: jupyterlab-vega3-3.1.2.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.6.0.post20210108 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for jupyterlab-vega3-3.1.2.tar.gz
Algorithm Hash digest
SHA256 89b9314931530a0aa792aefe63f05dbbb7b58fa00d0cb76f9dad9fab73825b34
MD5 48f8be20e8d22bbb0e9db676c1641468
BLAKE2b-256 f7c468168e7b8efea02f33fd93aa6495f5c25606f656bcac39a266d4b0285733

See more details on using hashes here.

File details

Details for the file jupyterlab_vega3-3.1.2-py3-none-any.whl.

File metadata

  • Download URL: jupyterlab_vega3-3.1.2-py3-none-any.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.6.0.post20210108 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for jupyterlab_vega3-3.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b5b5943279353ca7c8b19dec7a1745a8f875ca774785011c17d65f6165ba98ae
MD5 0bf15f96da7535f2e701a6b50e90261c
BLAKE2b-256 e667eed663594d456f34637fcb2f1d10b30bcf517335a1b53e5303aaf9cd3bab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page