Skip to main content

JupyterLite loader for Xeus kernels

Project description

jupyterlite_xeus

Github Actions Status JupyterLite loader for Xeus kernels

Requirements

  • JupyterLab >= 4.0.0

Install

To install the extension, execute:

pip install jupyterlite_xeus

Usage

From environment.yaml

xeus-python kernel

To create a xeus-python kernel with a custom environment, one creates an environment.yaml file with xeus-python and the desiered dependencies. Here is an example with numpy as a additional dependency:

name: xeus-lite-wasm
channels:
  - https://repo.mamba.pm/emscripten-forge
  - conda-forge
dependencies:
  - xeus-python
  - numpy

To build the jupyterlite run the following command, where environment.yaml is the path to the file you just created

jupyter lite build --XeusAddon.environment_file=some_path/to/environment.yaml

xeus-lua / xeus-sqlite / xeus-<mylang>

To create a xeus-lua or xeus-sqlite kernel you can do the same as above, just with

dependencies:
  - xeus-lua

or

dependencies:
  - xeus-sqlite

Note that xeus-sqlite and xeus-lua do not yet support additional dependencies. To build the jupyterlite, run again:

jupyter lite build --XeusAddon.environment_file=environment.yaml

Multiple kernels

To create a deployment with multiple kernels, you can just add them to the environment.yaml file:

name: xeus-lite-wasm
channels:
  - https://repo.mamba.pm/emscripten-forge
  - conda-forge
dependencies:
  - xeus-python
  - xeus-lua
  - xeus-sqlite
  - numpy

From local environment / prefix

When developing a xeus-kernel, it is very usefull to be able to test it in a jupyterlite without having to publish it to emscripten-forge. Therefore you can also use a local environment / prefix to build a jupyterlite with a custom kernel.

Create a local environment / prefix

This workflow usually starts with creating a local conda environment / prefix for emscripten-wasm32 with all the dependencies you need to build your kernel (here we install dependencies for xeus-python )

micromamba create -n xeus-python-dev \
    --platform=emscripten-wasm32 \
    -c https://repo.mamba.pm/emscripten-forge \
    -c conda-forge \
    --yes \
    "python>=3.11" pybind11 nlohmann_json pybind11_json numpy pytest \
    bzip2 sqlite zlib libffi xtl pyjs \
    xeus xeus-sqlite xeus-lite

Build the kernel

This depends on your kernel but will look something like this:

# path to your emscripten emsdk
source $EMSDK_DIR/emsdk_env.sh

WASM_ENV_NAME=xeus-python-dev
WASM_ENV_PREFIX=$MAMBA_ROOT_PREFIX/envs/$WASM_ENV_NAME

# let cmake know where the env is
export PREFIX=$WASM_ENV_PREFIX
export CMAKE_PREFIX_PATH=$PREFIX
export CMAKE_SYSTEM_PREFIX_PATH=$PREFIX

cd /path/to/your/kernel/src
mkdir build_wasm
cd build_wasm
emcmake cmake \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_FIND_ROOT_PATH_MODE_PACKAGE=ON \
    -DCMAKE_INSTALL_PREFIX=$PREFIX \
    ..
emmake make -j8 install

Build the JupyterLite site

You will need to create a new environment with the dependencies to build the JupyterLite site.

# create new environment
micromamba create -n xeus-lite-host \
    jupyterlite-core

# activate the environment
micromamba activate xeus-lite-host

# install jupyterlite_xeus via pip
python -m pip install jupyterlite-xeus

When running jupyter lite build we pass the prefix options and point it to the local environment / prefix we just created:

jupyter lite build --XeusAddon.prefix=$WASM_ENV_PREFIX

Mounting additional files

To copy additional files and directories into the virtual filesytem of the xeus-lite kernels you can use the --XeusAddon.mount option. Each mount is specified as a pair of paths separated by a colon :. The first path is the path to the file or directory on the host machine, the second path is the path to the file or directory in the virtual filesystem of the kernel.

jupyter lite build \
    --XeusAddon.environment_file=environment.yaml \
    --XeusAddon.mounts=/some/path/on/host_machine:/some/path/in/virtual/filesystem

Contributing

Development install from a conda / mamba environment

Create the conda environment with conda/mamba/micromamba (replace micromamba with conda or mamba according to your preference):

micromamba create -f environment-dev.yml -n xeus-lite-dev

Activate the environment:

micromamba activate xeus-lite-dev
python -m pip install -e .   -v --no-build-isolation

Packaging the extension

See RELEASE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jupyterlite_xeus-0.1.2.tar.gz (277.8 kB view details)

Uploaded Source

Built Distribution

jupyterlite_xeus-0.1.2-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file jupyterlite_xeus-0.1.2.tar.gz.

File metadata

  • Download URL: jupyterlite_xeus-0.1.2.tar.gz
  • Upload date:
  • Size: 277.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for jupyterlite_xeus-0.1.2.tar.gz
Algorithm Hash digest
SHA256 aafee0b29795950749bc7c277ef88b9ab45edb9ff910c38aadf909410396ac92
MD5 f8e57a999afd5c80e06c0cf252deedab
BLAKE2b-256 bc64c6519008bb438c41d52818cbd76aad824d0070ba061b3f16eff9cad09287

See more details on using hashes here.

Provenance

File details

Details for the file jupyterlite_xeus-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for jupyterlite_xeus-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e8714ba06b0a8d169f52f0f14a04b3a328fe60f850c283327a90c76a9c0b1178
MD5 d132a07ba4f18c4bd693dbd02d0d15e3
BLAKE2b-256 22b5f9deda90064d8d6e9a5e241b29bd17d022a7832aebb52848eb70826a9b29

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page